The University of Kansas /

Copyright © 2000:

All rights reserved.

Information and
’ “Telecommunication
Technology Center

Technical Report of the
Networking and Distributed systems Laboratory

A KU-PNNI User’'s Manual
Version 2.0

Phongsak Prasithsangaree, Gowri Dhandapani,
Bhavani Shanmugam, Kamalesh Kalarickal,
Venuprakash Barathan, and Douglas Niehaus

ITTC-FY2001-TR-18833-13

November 2000

Project Sponsor:
Sprint Corporation

The University of Kansas Center for Research, Inc.,
2335 Irving Hill Road, Lawrence, KS 66045;
and Sprint Corporation.

Contents

1 Introduction 1
2 PNNI 2
21 IntroductiontoPNNI. o 2
22 PNNIRouting 2
221 PeerGroup 2

222 HELLO. 3

2.2.3 Node Peer FSM and Topology Database Exchange 3

224 Flooding e 3

225 Addressingand Reachability, 4

2.2.6 Source Routing and Call Admission Control 4
226.1 SingleQoSRouting o oL 4

226.2 MultipleQoSRouting L 5

227 PNNIHierarchy 5
2271 PeerGroupLeader 5

2272 LogicalNodes 6

2273 Information Exchange Between Levels of the Hierarchy 6

23 PNNISignaling o 6
2.3.1 PointtoPointConnection 0oL 8

232 Designated TransitLists 8

2.3.3 Crankback with Alternate Routing 9

24 SUMMAIY oot e e e 10
3 Multiple Peer Groups in KUPNNI 11
3.1 Introductionto PNNIHierarchy 11
3.1.1 Formingthehierarchy 12

3.1.2 Nodal and Link Aggregation 13

3.2 Nodal Aggregation Policies 15
321 Fullmesh 15

3.2.2 Symmetric Star aggregation o Lo oL 15

3.2.3 Asymmetric Star aggregation Lo 15

3.3 Link Aggregation Policies o . 16
3.3.1 Optimistic link aggregation 18

3.3.2 DPessimisticaggregation L. 18

333 Averageaggregation oo 18

ATM Addressing Scheme
41 Introduction e
42 ATM Addressing Formats o o

421

Example e

43 Addressingin PNNI

431
432
4.3.3
434
4.3.5

Level Indicator e
Peer Group Identifiers
Nodeldentifiers. e
HostIdentifiers e
A Hierarchical example

A Glance of Information Database Structure
5.1 How Information Database is constructed ?

5.1.1 Whatis Flooding Mechanism?

5.1.2 How the Database is constructed?

5.1.3 When the resource availability information in the Database is invalid ? . . .

5.2 What is inside the Information Database?

52.1 WhatareinsidethePTSE?

5.3 When the Database mustbe updated.

5.3.1 The Significant Change of Resource Availability Information

53.2 The Expiration of Database

54 How the Databaseisupdated

5.4.1 What to do when a node receivesanew PTSE?

5.4.2 What to do when the Database isexpired ?

54.3 What to do when the Database needs to be refreshed ?
Architecture

6.1 Simulation e e

6.1.1 SimulationKernel

6.1.2 Priority of Servicing

6.1.3 Simulation of Link and Queueing Delays

6.1.3.1 Simulation of Links BetweenPorts

6.1.3.2 LinkDelays and Queuingdelays

6.1.4 Control Flow within SimulationKernel

6.14.1 Event Driven Virtual Time Simulation

6.142 WalkThrough

6.1.4.3 Distinction between instant and delayed messages

6.14.4 Simulating Other Switch Processing Delays

6.1.5 Q.PortSwitchCallControl

6.1.5.1 SCC Finite State Machine

Crankback and Alternate Routing
7.1 Crankback Mechanism
7.2 Alternate Routing Mechanism

7.2.1 Source Node Does Alternate Routing

7.2.2 Source Node Rejects the Failed Call

7.2.3 Intermediate Node Actions i
CallGenerator

ii

21
21
21
22
23
23
23
23
24
24

26
26
26
26
26
27
27
27
27
28
28
28
28
28

29
29
30
31
31
31
31
31
32
32
34
34
35
35

38
38
39
39
40
41

44

9 User Interface

9.1 Components of the PNNIATM Network
92 TheUserInterface.
921 Componentsof UserInput
922 UserInputRestrictions. 00

10 Nomenclature, Keywords and Syntax
10.1 NamingConventions i it
10.2 Statement. L e

10.3 Component Group
10.4 Additional Syntax

11 Examples

11.1 A Ring Topology Configuration

11.1.1 Simulation

11.1.1.1 SimulationResults o

A Component Specific Details
A.1 Parameter block for Node Information
A.2 Individual Node Information
A.3 Generic Port Information e e e e
A.4 Parameter block for Host Information
A5 Individual Hostinformation

A.6 Load Information

A7 Connectivity Information 0o L o oo
A8 Logical Node Information
A9 Logical Connectivity Information L.

A.10 Schedule of events

B BNF Grammar

ii

46
46
46
49
50

52
52
52
53
55

56
56
56
61

92
92
96
98
99
102
103
104
104
105
105

107

Chapter 1

Introduction

This user manual describes the KU PNNI simulation tool. It has a common user interface to
setup a simulation experiment. This interface is designed to facilitate the user in specifying the
minimal required parameters to setup a network and run experiments of varying complexity and
magnitude. Its intention is to allow the user to specify the input script describing an experiment
with ease. The tool parses the user input script, completes the necessary additional information
left unspecified in the user input, and then performs the simulation.

This document is an attempt to make the user familiar with the abilities, limitations, and id-
iosynchracies of this tool. Chapter 2 provides a brief description of PNNI. Chapter 3 talks about
the implementation of Multiple Peer Groups in our simulator. Chapter 4 explains about the AT-
M addressing scheme. Chpater 5 deals with the Information Database structure. 6 discusses the
architecture of the simulation software. Chapter 7 explains the crankback and alternate routing
mechanism. Chapter 8 summarizes the call generator used to make calls, i.e. generate the traffic
in the experiment. Chapters 9 and 10 describe the structure and details of the interface.

Several example input scripts and the output produced for them detailed in Chapter 11. Lan-
guage details are provided in Appendix A and the BNF grammar is chronicled in Appendix B.

Chapter 2

PNNI

2.1 Introduction to PNNI

PNNI is an acronym for Private Network-Node Interface or Private Network-Network Interface.
It is a topology state routing protocol in which nodes flood quality of service and reachability
information to all other nodes so that each node obtains complete information about the topology
of the network and its current state. In an effort to reduce the complexity of such a scheme, PNNI
uses a hierarchical model to divide nodes into peer groups.

Features of PNNI include the following:

e It has the capability to automatically configure itself when the address structure reflects the
topology of the network.

The hierarchical model allows it to scale well for large networks.

Crankback feature allows it to reroute around failed components during call setup.

Connection follows the same path as the setup message used.

e Uses many routing metrics including cell transfer delay, cell delay variation, current and
average peak load.

2.2 PNNI Routing

In general, PNNI is an ATM routing protocol that provides Quality of Service. Because ATM is
connection oriented, a connection must be routed from the source to the destination during setup.
To ensure QoS for the user, an efficient and adaptive method for setting up calls is essential.

PNNI divides a network up into groups of related nodes called Peer Groups. Within a peer
group, nodes exchange topology state information with each other so that each node obtains a
complete picture of the topology of the peer group and its state. One hierarchical level up, a logical
node represents each peer group and summarizes state and reachability information for the peer
group that it represents. Each peer group has a leader who communicates with the logical node
to exchange information about the network.

2.2.1 Peer Group

A peer group consists of a group of network nodes that usually share a common trait - physical
proximity, similar addresses, etc. The nodes are connected either by physical connections or logical

connections. They share information with each other to assure that all nodes in the peer group
have the same assessment of the network.

2.2.2 HELLO

Each node in the peer group periodically exchanges HELLO packets with its neighbors to de-
termine its local state. A HELLO packet is an advertisement of one’s address that requires the
recipient to reply back with its address. It also includes some metric measurements about the
state of the connection.

2.2.3 Node Peer FSM and Topology Database Exchange

After two nodes exchange HELLOs, if they determine that they are in the same peer group they
begin to exchange topology databases. When the HELLO packets are exchanged and nodes syn-
chronize with each other, they advertise the topology information they have in summary packets.
When a node receives a summary packet it makes a list of topology information it needs and
sends the request through request packets. Required topology information packets are created by
bundling up all of the requested topology information related to a node in one group called PNNI
Topology State Element. The PTSEs of different nodes thus created are put together into a packet
called a PNNI Topology State Packet, PTSP, and sent to the peer node. This results in two nodes
having identical network information. This only occurs between neighbors - flooding distributes
information to the other nodes.

The PTSEs contain attributes concerning the state of the links and nodes in the peer group.
This may include metrics such as delay, attributes such as security or capacity restrictions, or
parameters such as cell transfer delay, cell delay variation, or cell loss ratio. They may also contain
reachability information - i.e., the list of destinations which may be reached through a node.

While exchanging the topology databases, each node first informs the other of the "version’
of its PNNI topology State Elements. Any PTSEs that are newer than those currently held by the
node are updated. The others are discarded. Once the databases have been synchronized, the two
nodes advertise the link between them through flooding.

2.24 Flooding

The flooding of information between nodes in the peer group allows each peer group to accumu-
late a complete picture of the database, rather than just information about its immediate neighbors.

Each node packages its PTSEs up into a PTSP (PNNI Topology State Packet) and sends it out
to all neighboring nodes. If the PTSEs contained in the PTSP are new or more recent than those
held by the node, the PTSEs are updated and the PTSP is sent out to all neighboring nodes of the
recipient except the PTSP originator. This propagates the information throughout the peer group.

Because the recipient acknowledges PTSPs, they are assured to be delivered. This is important
because this guarantees reliable exchange of topology information, which is essential in such a
scheme. If a PTSP is not acknowledged within a certain time frame, it is sent again. In addition,
PTSEs have a life span. If they are not updated regularly, they are discarded.

Updates may happen periodically or be event driven. For example, many times the PTSE is
updated with any change in the administration weight. The default flooding period is 30 minutes
as defined by the ATM Forum [1]. Nodes have a hold-down time to keep flooding from happening
too often and congesting the network.

2.2.5 Addressing and Reachability

Each node has an ATM address, this is a 22 byte address, the first byte being the level indicator,
this gives the number of bits of common prefix within a peer group, the next byte indicates if it
is a logical node or a physical node, these two bytes are followed by a prefix, a hardware address
and the selector byte.

Because it is not feasible or desirable for a switch to explicitly advertise each individual reach-
able address, PNNI uses address prefixes to determine reachability.

When a switch learns of a connection to a reachable address, it checks to see if it has an entry
for a summary address that is a prefix of the new address. If so, it advertises the summary address
and not the individual address. If not, the address must be advertised individually and is called a
foreign address.

A summary address might look like 39.9.1.1.X. This means that any address beginning with
39.9.1.1 may be reached through a particular node.

2.2.6 Source Routing and Call Admission Control

PNNI signaling is based on source routing which means that the source switch computes the path
for the entire transmission. It enumerates the path in a DTL (Designated Transition List). A DTL is
a list of nodes and/or peer groups to traverse. Every source node follows a Generic Call Admission
Control (GCAC) algorithm for pruning out those links that cannot support the call requirements.
After that a path is computed using some node specific Routing Policy. Finally, at each Node-to-
Node interface, the specific Call Admission Control (CAC) policy determines whether that path can
support the requested traffic.

Because routing decisions are not necessary at every intermediate switch, source routing im-
proves network performance. Additionally, this allows different switches to use different routing
algorithms.

A routing function performs differently depending on what criteria are critical. In our sim-
ulator, single and multiple QoS routing functions are implemented. The Dijkstra’s Single source
shortest path algorithm is used for computing the route.

2.2.6.1 Single QoS Routing
Our simulation is able to find route which follows the criterion below
e minimum hop count
e minimum delay
e minimum administrative weight
e maximum bandwidth

When hop count is a criterion, the route with the minimum number of hops is returned. If
there are more than one routes which have the minimum number of hops, the one to be returned
is randomly selected.

When delay is a criterion, the route with the minimum amount of delay is returned. If there
are more than one route are available, the one to be returned is randomly selected.

When administrative weight is a criterion, the route with the minimum administrative weight
is returned. If there are more than one routes are available, the one to be returned is randomly
selected.

When bandwidth is a criterion, the route with the maximum bandwidth is returned. If there
are more than one routes that have maximum bandwidth , the one to be returned is randomly
selected.

2.2.6.2 Multiple QoS Routing

To find a route which is optimum is a key of routing function. Sometimes routing with only one
QoS constraint does not always return a route that best fits a connection requirement. Multiple
QoS routing is

The multiple QoS routing function we were required to implement are listed below:

e Minimum Administrative Weight - Shortest Routing Algorithm

The notion of “min-adweight-shortest” means that is link delay the first criterion and ad-
ministrative weight is the second criterion. For all routes connected from a source node to
a destination, it finds the route with the minimum delay. If there are more than one routes
found, it finds the route with the minimum administrative weight from that set.

e Shortest-Minimum Administrative Weight Routing Algorithm

The notion of ”shortest-min-adweight” means that administrative weight is the first criterion
and link delay is the second criterion. For all routes connected from a source node to a
destination, it finds the route with the minimum administrative weight. If there are more
than one routes found, it finds the route with the minimum delay from that set.

e Shortest-Widest Routing Algorithm

The notion of ”“shortest-widest” means that link bandwidth is the first criterion and link
delay is the second criterion. For all routes connected from a source node to a destination,
it finds the route with the maximum bandwidth. If there are more than one routes found, it
finds the route with the minimum delay from that set.

e Widest-Minimum Hop Routing Algorithm

The notion of “widest-min-hop” means that hop count is the first criterion and link band-
width is the second criterion. For all routes connected from a source node to a destination,
it finds the route with the minimum hop count. If there are more than one routes found, it
finds the route with the maximum bandwidth from that set.

2.2.7 PNNI Hierarchy
2.2.7.1 Peer Group Leader

Each peer group in PNNI has a leader which is little more than a communication point between
the peer group and the logical node one level up in the hierarchy that represents the peer group.
Other than this role in information distribution, the PGL behaves the same as the other nodes in
the peer group.

There can be at most one leader per peer group and it is selected through Peer Group Leader
Elections (PGLE). The node with the highest leadership priority is elected leader. Note that this is
an ongoing process, so the leader can change temporally.

2.2.7.2 Logical Nodes

A logical node has the responsibility of representing the summary information of its child peer
group in its own peer group. The logical node must accumulate information about its child peer
group and distribute it to the nodes in its own peer group. It also is obligated to relay information
about its own peer group down to its child peer group.

2.2.7.3 Information Exchange Between Levels of the Hierarchy

The peer group leader is responsible for accumulating the complete topology state information
for its peer group (as are all members of the peer group). The group leader can then summarize
the information and pass it on to the logical node representing it.

The group leader passes reachability information and topology aggregation up the hierarchy.
Topology aggregation is the accumulation of topology information that includes nodes that are not
in your peer group through summaries of topology. PTSEs are never transferred up the hierarchy.

The logical node has the associated task of bundling up this summary information and dis-
tributing it within its peer group. Upon exchanging information with its peer group members
and amassing its own topology information, the logical node passes all PTSEs that it has received
down the hierarchy to the group leader. The group leader then floods it to all other members of
the peer group. This information is necessary to allow nodes in the lower levels to route to all
destinations in the routing domain. Through this exchange, the lowest level nodes learn of the
topology (at least in summary) of the rest of the network.

2.3 PNNI Signaling

ATM signaling is a protocol used to set up, maintain and clear switched virtual connections be-
tween two ATM end users over private or public UNIs. The protocol is, in fact, an exchange of
messages that take place between the ATM end user and adjacent ATM switch. The messages
contain information that is used to build, maintain or clear the connection. The messages are seg-
mented into cells at the signaling AAL and then transported over a standard signaling channel,
VPI=0, VCI=5.

ATM signaling messages can be grouped into one of three functional categories: call establish-
ment, call status, and call clearing operations.

Call establishment messages consist of the following;:

SETUP Message: Sent by calling, or source ATM end-user, to network (defined here as nearest
ATM switch connected to ATM end user over UNI) and from network (defined here as near-
est ATM switch connected to destination ATM end-user over UNI) to called, or destination
ATM end-user. Used to initiate connection setup. Contains information such as destination
ATM address, traffic descriptors and QoS.

CALL PROCEEDING Message: Sent by destination end user to the network and by network to
source ATM end user to indicate that call establishment has been initiated.

CONNECT Message: Sent by destination ATM end user to network and by network to source
ATM end user to indicate that destination ATM end user accepts connection request.

CONNECT ACKNOWLEDGE Message: Sent by network to destination ATM end user to indi-
cate call is accepted. May also flow from source ATM end user to network to maintain
symmetrical call control procedures.

Call status messages are:

STATUS Message: Sent by ATM end-user or network in response to a STATUS ENQUIRY mes-
sage.

STATUS ENQUIRY Message: Sent by ATM end-user or network to solicit STATUS message.

NOTIFY Message: Sentby ATM end-user or network to indicate information pertaining to a cal-
1/ connection.

Call clearing messages consist of the following:

RELEASE Message: Sent by an ATM end-user to request the network to clear the end-to-end
connection or is sent by the network to indicate that the VCC is cleared and that the receiving

ATM end user should release the virtual channel and prepare to release the call reference
after sending a RELEASE COMPLETE.

RELEASE COMPLETE Message: Sent by an ATM end-user or network to indicate that virtu-
al channel and call reference have been released and that the entity receiving the message
should release the call reference.

The following figure shows the flow of messages for a point-to-point connection.

UNI NNI UNI
ATM | ATM | ATM | ATM
End User | Switch | Switch | End User

SETUP
T SETUP
CALL PROCEEDING CALL PROCEEDING

CONNECT

CONNECT
CONNECT ACKNOWL EDGE CONNECT ACKNOWL EDGE
DATA

RELEASE

T RELEASE

. RELEASE COMPLETE RELEASE COMPLETE

Figure 2.1: ATM Point-to-Point connection Message Flow

The ATM Forum has defined signaling standards UNI 3.0, 3.1 and 4.0. The signaling compo-
nent of PNNI is used to forward the SVC request through the network of switches until it reaches
the destination. PNNI signaling makes use of the network topology, resource, and reachability in-
formation provided by PNNI routing to progress an VSC request through the network. It is based
on UNI 3.1/4.0 signaling but has been enhanced with several extensions specific for the PNNI
environment. PNNI signaling supports new capabilities: specific QoS parameters, ATM anycast
addressing and scoping, and ABR. Additionally PNNI uses two other techniques designated tran-
sit lists (DTL) and crankback with alternate routing, to successfully complete the SVC request
and connection setup. The DTL enumerates a path from source to destination through the hierar-
chy and is computed by the source because PNNI uses source routing. Crankback with alternate
routing is used to contend with network problems or inaccurately aggregated information.

2.3.1 Point to Point Connection

A point to point connection is a full duplex connection between two ATM endpoints. To establish
such a connection, several steps are required. First, a path from source to destination must be
computed. Second, the call must be established, preparing for failure and coping with it. Finally,
the call must be released.

What follows is a brief description of each of the first two steps described above.

2.3.2 Designated Transit Lists

A designated transit list is a vector of information that defines a complete path from the source
node to the destination node across a peer group in the routing hierarchy. A DTL is computed
by the source node or first node in a peer group to receive an SVC request. Based on the source
node’s knowledge of the network, it computes a path to the destination that will satisfy the QoS
objectives of the request. Nodes then simply obey the DTL and forward the SVC request through
the network.

A DTL is implemented much like a stack as seen in Figure 2.2 [2]. The border, or entry node to
each peer group specifies a path across that peer group. Figure 2.2 is an example of a DTL and an
associated network.

El.l E.l.l EZ] EZl

AlZ A1Z AZ3 A2 BE1 E1
A
A2 A2 A2 A2 B3 E3
FEELEEE
E B E E E E

Figure 2.2: A DTL Example

In this example, we are trying to get from A.1.1 to B.3 in our network. The path is enumerated
as shown in the first column (each column is a the DTL at each stop along its path. The message

is sent from A.1.1 to A.1.2 as shown in the DTL. At A.1.2 it sees that it is the destination for level
1 of the hierarchy. It then moves down the DTL and sees that the new destination is PG A.2. The
message is then sent to a border node on A.2 (A.2.1). Because A.2.1 is an entry point, it enumerates
the path through its peer group and adds it to the DTL as seen in the third column. The message
is then sent to A.2.3 as prescribed in the DTL. At A.2.3, it sees that it is the destination for level 1
of the hierarchy. It then moves down the DTL and sees that its peer group is the destination for
level 2 of the hierarchy. It then moves down the DTL and sees that the destination is PG B. The
message is then sent to a border node on B (B.1). Because B.1 is an entry point, it enumerates the
path through its peer group and adds it to the DTL as seen in column 5. The message is then sent
to B.2 and then to B.3 where it sees that it is the destination for level 1 of the hierarchy. It then
moves down the DTL and sees that its peer group is the destination for level 3 of the hierarchy
as well. This is the end of the DTL, so the node knows that message has arrived and that it is the
recipient.

2.3.3 Crankback with Alternate Routing

When a DTL is created, it uses the currently available information about the network. For many
reasons though, this information may be incorrect. Nodes or links may go down at any time or
resources may become unavailable because of network congestion causing the DTL to route to
an undesirable node. This may cause the SVC request to be blocked, short of going all the way
back to the source to reestablish the connection, PNNI invokes a technique called crankback with
alternate routing.

When the SVC request cannot be forwarded according to the DTL, it is cleared back to the
originator of the DTL with an indication of the problem. This is the crankback mechanism. When
failure first occurs, the message is sent back to the originator of the top entry of the DTL. At that
pointa new DTL (alternate route) may be constructed that bypasses the nodes or links that blocked
the SVC request but which must match the higher-level DTLs which are further down in the DTL
stack. If no path can be found, then the request is cranked back to the previous DTL originator.
Ideally, it would not have to be routed all the way back to the source, but at some point on its way
back, a better route can be found and the message could continue on its way to the destination
with minimal delay. But if the source node is reached, then the crankback message is translated
into a REJECT and the source must attempt another connection request.

In a single peer group scenario, if there is a failure at some point, the message is cranked back to
the source node with an indication of the problem and an alternate route is established bypassing
the failed nodes or links. In a multiple peer group scenario, if there is a failure in a particular peer
group then the call is cranked back to the ingress border node of that peer group. The ingress
border node then tries to find another route for transiting this peer group. The signaling message
flow is as shown in Figure 2.3.

For example, imagine in our example of DTL routing in figure 2.2 above that node B.2 became
unavailable, unbeknownst to the source, before our message began its journey. When it reached
B.1 and realized that B.2 was unavailable, it would crankback the message. The message is then
propagated back and any node that added an entry to the DTL can change the DTL. For example,
A.2.3 would merely pass it along because it did not add an entry to the DTL. However, A.2.1 did.
So did B.1. When B.1 decides to crankback, it would be the first to try and reroute the message
because it was the last to modify the DTL. If B.3 is available, B.1 may change the DTL to reflect
the new route from B.1 to B.3, bypassing B.2, but is not obligated to. If B.1 could not reroute the
message or chose not to reroute the message due to some restrictions of its own, (in this case, kind
of a dead end) then B.1 would send the message back to A.2.3 and so on and so forth until a new

UNI NNI NNI UNI
ATM | ATM | ATM | ATM | ATM
End User \ Switch \ Switch \ Switch \ End User
SETUP —
\9 FAILURE
RELEASE COMPLETE
RELEASE
RELEASE COMPLETE
SETUP(alt route)
SETUP(alt route)
= SETUP
CALL PROCEEDING CALL PROCEEDING
CONNECT CONNECT
CONNECT
CONNECT
| CONNECT ACKNOW! EDGE | | CONNECT ACKNOWI EDGE]
DATA
REI FASE REL EASE
ELEASE
REL EASE
RELEASE COMPLETE RELEASE COMPLETE

Figure 2.3: Message flow with Crankback and Alternate Routing

path is found.
This is PNNI’s dynamic routing capability.

24 Summary

PNNI, the Private Network-Node Interface is a hierarchical routing protocol which uses topology
state information to keep all nodes in the network aware of the network’s state. There is an initial
exchange of information, as well as upon significant changes in the network state. In this way,
PNNI can provide many features absent in other routing protocols.

10

Chapter 3

Multiple Peer Groups in KUPNNI

3.1 Introduction to PNNI Hierarchy

PNNI is an ATM routing protocol that uses a hierarchical organization of nodes and links, and
summarizes reachability information between levels in the hierarchy. This allows ATM networks
to scale to a very large number of ATM switches, since it reduces the amount of topology and
state information that needs to flow in the network. Each level of the hierarchy consists of nodes
interconnected by links. Multiple nodes at one level can be summarized and represented as a
logical node at a higher level. At the lowest level of the hierarchy, each node is a physical switching
device and each link is a physical link. Athigher levels, nodes and links are logical representations.
At the lowest level of the hierarchy, each ATM switch is assigned a peergroup ID which identifies
the peer group to which the switch belongs. A peer group is a collection of nodes, each of which
exchanges full link state information with each other and obtain the same topology database, so that
they share the same view of the world.

Figure 3.1 shows a network of 17 ATM switches that are organized into five peer groups. These
peer groups are called lowest level peer groups and form the base of the hierarchy. A link that
connects two nodes in the same peer group is called a horizontal link. A node attached to a link
that crosses a peer group boundary is called a border node. Links that connect border nodes are
called outside links.

PG(A3)

border node

outside link

PG(B.2)

PG(B.1)

PG(AL) PG(A.2)

Figure 3.1: Lowest level of ATM Network

11

PNNI is a topology state protocol which is similar to a link state protocol. PNNI nodes flood
information about themselves and their neighbors to all other members of their peer group. Infor-
mation is distributed as PNNI Topology State Elements (PTSEs) within packets called PNNI Topol-
ogy State Packets (PTSPs). Nodes assemble this information into a topology database which they
use to compute routes. Nodes distribute the following types of information.

e Nodal information describes a node’s identity and reachability.
e Link State information describes characteristics of horizontal links.
e Uplink information represents the characteristics of outside links.

e Nodal State information contains the representation of the internal details of a peer group

3.1.1 Forming the hierarchy

The nodes in each peer group elect one of their members to be the Peer Group Leader (PGL). The
ATM switch that hosts the PGL activates another logical PNNI node called the Logical Group Node
(LGN) which represents it at the next level of the hierarchy. The LGN summarizes the peer group
called its child peer group by performing nodal and link aggregation. At the next level, LGNs form
their own peer groups based on the peer group IDs with which they have been configured. The
peer group to which an LGN belongs is the parent peer group of the nodes that the LGN represents.

PG(A)

Logical node

PG(B.1)
PG(AL) PG(A.2)

Figure 3.2: Second level of hierarchy

Figure 3.2 shows five peer groups, each peer group has elected a PGL. Each PGL has activated
a LGN to represent its peer group at the next level of the hierarchy. The LGNs have also formed
their own peer groups - PG(A) and PG(B) at their level. In this example, PG(A.2) is the child peer
group of LGN A.2 and PG(A) is its parent peer group.

Limited routing information flows both up and down the hierarchy. The LGN aggregates
topology state information and summarizes reachability information about its child peer group
and floods this information throughout the parent peer group. The aggregation and summariza-
tion that occurs here reduces the amount of routing information that must be distributed and that
each node must maintain, giving hierarchical PNNI its scalability. An LGN collects information
from the parent peer group and injects the information into its child peer group. In this way, lower
level nodes learn summarized information about the network outside their own peer group.

12

From the flooding of information throughout a peer group and from the summarized informa-
tion down the hierarchy, each PNNI node constructs a topology database describing its own peer
group and all ancestor peer groups. In order to route a connection request, a node must know
which nodes within its peer group have connections to an ancestor peer group. A border node
provides this information by advertising an uplink that connects the border node to a higher level
peer group.

Figure 3.3 shows uplinks for PG A.1. In addition to connecting peer groups at different levels,
uplinks enable LGN to construct horizontal links to other LGNs.

PG(A.1)

Figure 3.3: Uplinks

The process of building the next level of hierarchy continues until the entire network is con-
tained in a single highest level peer group, illustrated in Figure 3.4. When the hierarchy is com-
plete, each lowest level PNNI node has a complete topology database which enables it to construct
a connected graph representing its logical view of the network.

3.1.2 Nodal and Link Aggregation

PNNI achieves scalability by hiding state information. One mechanism used to hide state informa-
tion is the representation of a peer group as a logical group node (LGN). This type of information
hiding is called node aggregation. A source node contemplating routes through an LGN needs
some notion of the state of the logical node. The PNNI Specification offers two options:

e simple node representation
e complex node representation

A simple representation assumes that traversal of a node affects the end-to-end parameter
values insignificantly, such as when the node represents a physical node. In this case, there is no
cost, delay, or loss associated with transiting a node. When the simple node representation is used
for an LGN, the entire LGN is treated as a point, with no resource constraints.

A complex node representation is useful when transiting a node is significant with respect to
the connection’s QoS requirements. This will naturally be true when a node is an LGN, represent-
ing a lowest level peer group and transiting the node really means transiting multiple physical
hops. The interior reference point of a logical node is referred to as the nucleus. A border reference
point of a logical node is known as port. A logical connectivity between the nucleus and a port
is referred to as a spoke with a radius. Exceptions can be used to represent particular ports whose
connectivity to the nucleus is significantly different from the default radius. Two ports may also

13

Top level peer group

PG(A)

PG(A.3)...

Logical node

PG(B.2)

PG(B.1)

PG(AL) PG(A.2)

Figure 3.4: Complete hierarchy

be connected via a bypass. A router outside the domain makes routing decisions using only the
routing costs between different ports of the domain, termed port-to-port distances. The complex
node representation is shown in Figure 3.5.

Port 1

radius
10 Y
\

i radius i
. Exception 10
\

'
\\ 15/® Port3
Port 2 ’

Bypass e

Figure 3.5: Complex Node representation

Topology aggregation usually consists of the following four steps:

e group or partition the network into domains and form the routing hierarchy

derive the port-to-port distances in each domain

represent the port-to-port distances in a compact manner

exchange the aggregated information among the domains

14

Network partitioning depends both on administrative constraints and performance consider-
ations. Exchanging information between domains is similar to exchanging information between
network nodes inside a domain, and can be accomplished by flooding. Deriving the port-to-port
distances and representing them in a compact manner are critical for routing performance and
scalability and are discussed in Section 3.2.

Link Aggregation is part of constructing the PNNI hierarchy. When two peer groups have
multiple links between them, link aggregation determines whether the common higher level peer
group represents those links individually as parallel links between LGNs or combines them into a
single link. The border nodes at the ends of each link exchange their aggregation tokens which are
configured by the network manager. Links which have the same aggregation token are aggregated
to form a single link at the next level of hierarchy. The state parameters of the logical link are
derived from the underlying physical link depending on the policy chosen, the details of which
are explained in Section 3.3

3.2 Nodal Aggregation Policies

The various nodal aggregation schemes that are supported by our simulator are

3.2.1 Full mesh

In this mesh representation, we representthe port-to-port distances by a matrix, with one entry
per port pair. Thus, a domain with N ports has a matrix of size N2. The information lost in full
mesh aggregation, compared to the flat non-hierarchical routing is mainly the correlation between
port-pair distances, since the paths between different port-pairs may share one or more common
links. However, this information is not used by most routing algorithms. In general, the full mesh
representation is accurate, but does not scale well with an increase in peer group size.

3.2.2 Symmetric Star aggregation

In this approach, the assumption is that the topology of the domain is symmetric, i.e., the distances
are the same between any two ports. Thus, the distances are represented by a single parameter,
the radius of the domain. This is much more scalable than the full mesh, since it reduces the
routing information representation size complexity, the price it pays is reduced routing inaccuracy.
The radius is calculated as the average of all port-to-port distances. The full mesh and the star
representation are shown in Figure 3.6, note that all the spokes in the star representation have the
same bandwidth value. For ametric parameter such as the delay, administrative weight, the radius
is half the value of the diameter, however for an attribute such as the bandwidth, the radius is the
same as the diameter.

3.2.3 Asymmetric Star aggregation

As a modification to the symmetric star approach, the distance of the border node from the nucleus
is computed taking into account only its incoming distances or its outgoing distances rather than
taking all port-to-port distances. The incoming distances to a particular node are the distances
to reach this node from other nodes where as the outgoing distances are the distances to reach
other nodes from this particular node. Each of these distances is represented as an exception in
the star. This is expected to be a better approximation of the real distances than the symmetric
star approach. There are a few alternatives for calculating these exceptions, using the average, the

15

/— path from a border node to a border node
3>

a a Aggregation o e
\ / (or summarization)

/ - spoke
A Full Mesh Representaion A Complex Node Representation

Q Border node
(or Logica Port)
. Nucleus

Figure 3.6: Nodal aggregation

optimistic, or the pessimistic approximations of the port-to-port distances. Optimistic distance
means taking the maximum value for an attribute and the minimum value for a metric. Taking
the optimistic distance would predict more resources than are actually available, this might cause
a larger number of crankbacks. The pessimistic distances advertise the minimum of attributes
and the maximum of metrics. So, predicting the worst distance would be underestimating the
resources available in the peer group, causing unnecessary call rejects. Hence, using the average
approximation seems to be a reasonable choice.

From Figure 3.7, showing the optimistic approximation for an attribute such as the bandwidth,
we see that the bandwidth values for outgoing paths from port 1 are 10, 15 and 20, the maximum
value 20 is assigned to the spoke from port 1 to the nucleus. Similarly we can observe that the
incoming distances to port 1 are 10, 15 and 25, the value of the spoke from the nucleus to port 1
is assigned 25. Also, note that since the figure shows attribute values, the radius is equal to the
diameter.

Figure 3.8 shows the pessimistic approximation for a metric parameter such as the delay, the
delay values for outgoing paths from port 1 to the nucleus are 10, 15 and 20. The pessimistic ap-
proximation chooses the maximum of the metric values and hence the exception from port 1 to
the nucleus has a value of 20/2 = 10. Note that the value of the spoke is half that of the diameter
because delay is an additive metric. Figure 3.9 shows the average approximation for delay values,
the outgoing distances from port 1 are 10, 15 and 20, so the spoke from port 1 to the nucleus is
calculated as the average of the values (10 + 15 +20)/3/2 =7.5.

3.3 Link Aggregation Policies

Link aggregation is used to summarize the outside links between two peer groups. If two outside
links to the same peer group have the same aggregation token, they are aggregated and represent-
ed in the next level as a single logical link. The state parameters for the advertised logical link
could be computed based on any of the following algorithms:

16

A Full Mesh Representaion
of Bandwidth of all Paths

Q Border node
(or Logical Port)

. Nucleus

Optimistic Aggregation for Incoming Paths for Bandwidth

Figure 3.7: Optimistic Nodal Aggregation for Bandwidth Values

A Full Mesh Representaion Pessimistic Aggregation for Outgoing Paths for Delay
of Delay of al Paths

Q Border node
(or Logical Port)

. Nucleus

25/2=125

& © & ©

Pessimistic Aggregation for Incoming Paths for Delay

Figure 3.8: Pessimistic Nodal Aggregation for Delay Values

17

A Full Mesh Representaion

e o
Border node B
Q (or Logical Port) 25 16.66/2=8.

15

’ Nucleus
Average Aggregation for Incoming Paths

O

Figure 3.9: Average Nodal Aggregation for Delay Values

3.3.1 Optimistic link aggregation

This policy advertises the best QoS parameters of all the outside links. The best of the costs of
links can be interpreted in two different ways, maximum and minimum. For a metric parameter,
the best is the minimum cost of all outside links, for example, link delay. On the other hand, for an
attribute such as the bandwidth of the link, the best choice would be the maximum. An example
of optimistic link aggregation for bandwidth values is shown in Figure 3.10, observe that there
are two outside linksbetween peer groups B and C with the same aggregation token. These two
outside links are represented as one link in the next level, taking the optimistic distance for an
attribute such as the bandwidth would mean the maximum of 150 and 300 and hence the value is
300.

3.3.2 DPessimistic aggregation

This policy summarizes the link information by finding the worst QoS parameter values of the
outside links. The worst of the costs will be the maximum of the metrics and the minimum of the
attributes. An example of pessimistic link aggregation for delay values is shown in Figure 3.11,
observe that there are two outside links between peer groups B and C with the same aggregation
token. These two outside links are represented as one link in the next level, taking the pessimistic
distance for a metric such as the delay would mean the maximum of 15 and 30 and hence the value
is 30.

3.3.3 Average aggregation

This policy computes the average of the QoS metrics and attributes for all the outside links hav-
ing the same aggregation token and represents these values at the next level. An example for

100 m 350
B Y = C
M 200 \,

10 m -
B | C
BE: \

YY

Figure 3.11: Pessimistic Link Aggregation for Delay Values

19

YY

100 m 350
B) k c
vohars \

Figure 3.12: Average Link Aggregation for Bandwidth Values

bandwidth values is shown in Figure 3.12, the two outside links from peer group B to C are aggre-
gated and represented as one link and the attribute value is calculated as the average of the two
(300 + 150)/2 = 225.

20

Chapter 4

ATM Addressing Scheme

4.1 Introduction

This document gives an overview about the ATM addressing formats in general and how these
addresses are used in the KUPNNI simulator.

4.2 ATM Addressing Formats

For the purposes of switched virtual connections, an ATM endsystem address uniquely identifies
an ATM endpoint. The format of an ATM address for endpoints in private ATM networks is mod-
elled after the format of an OSI Network Service Access Point (NSAP), as specified in ISO 8348
and ITU-T X.213.

The structure of the ATM Address can have three different formats as shown in Figure 4.1

Each of the address fields in the formats are explained below.

e Initial Domain Part (IDP) The Initial Domain Part (IDP) specifies an administrative authority
which has the responsibility for allocating and assigning values of the Domain Specific Part
(DSP). The IDP consists of two fields, the Authority and Format Identifier (AFI) and the
Initial Domain Identifier (IDI).

The AFlidentifies the authority allocating the Data Country Code, International Code Deigna-
tor, or E.164 number; the format of the IDI, and the syntax of the remainder of the address.
The length of this field is 1 octet. The following codes are specified.

AFI Format of | DI and DSP
39 DCC ATM For mat

47 | CD ATM For nat

45 E. 164 ATM For nat

e Data Country Code (DCC) The Data Country Code specifies the country in which the ad-
dress is registered. The length of this field is two octets. The codes will be left justified and
padded on the right with the hexadecimal value "F’ to fill the two octets.

21

{AFI | DCC HO - DSP ESI

rmon

—~—IDP DsP

=D
DCC ATM Format

{AFI | DCC HO - DSP ESl

-mon

—~—|DP DsP
D>

ICD ATM Format

{AFI E.164 HO - DSP ESl

-mon

IDP- DsP

< DI

E.164 ATM Format

Figure 4.1: ATM Addressing Format

¢ International Code Designator (ICD) The International Code Designator specifies an inter-
national organisation. The length of this field is two octets. The codes will be left justified
and padded on the right with the hexadecimal value "F’ to fill the two octets.

e E.164 (E.164) E.164 specifies Integrated Services Digital Network Numbers. These numbers
include telephone numbers. The international format of these numbers will be used. The
length of this field is 8 octets.

e Domain Specific Part (DSP) The Domain Specific Part is subdivided into the High Order DSP
(HO-DSP) and low order part which consists of the End System Identifier (ESI) and Selector
(SEL).

e HO-DSP The coding of this field is specified by the authority identified by the IDP. The
authority determines how identifiers will be assigned and interpreted within that domain.
The contents of this field not only describes the hierarchy of addressing authority, but also
topological significance. That is, the HO-DSP should be constructed in such a way that
routing through interconnected ATM subnetworks is facilitated.

e End System Identifier (ESI) The end system identifier identifies an end system. This identi-
fier must be unique within a particular value of the IDP + HO-DSP. In addition, to ensure
the ability of an end system to autoconfigure its address, this end system identifier can be
a globally unique identifier specified by an IEEE MAC address. The length of this field is 6
octets.

e Selector The selector is not used for ATM routing, but may be used by end systems. The
length of this field is 1 octet.

421 Example
As an example an ICD Format ATM Address would look like this.

22

AFI 1CD ----=---- HO DSP----- ----- ESI---- SEL
96: 160: 47. 0005. 80f f €1000000f 21a206. 0020481a2e06. 00

4.3 Addressing in PNNI

Addressing and identification of components of the PNNI routing hierarchy are based on the use
of ATM End System Addresses and/or prefixes applied to ATM End System Addresses. ATM
End System Addresses are inturn modelled after NSAP addresses as explained above.

ATM End System Addresses are 20 octets long. PNNI routing operates on the first 19 octets
of the ATM address. The selector(20th) octet has only local significance to the end system and is
ignored by PNNI routing.

PNNI operates in a topologically hierarchical environment. The structure of the hierarchy is
defined by the peer group IDs used in the routind domain. Address assignment has a hierarchy
that should generally correspond to topological hierarchy, for proper scaling. This allows address
summarization where an address prefix represents reachability to all addresses that begin with
the stated prefix.

4.3.1 Level Indicator

PNNI entities(nodes, links and peer groups) occur at various hierarchical levels. The level spec-
ifies a bit string length and reanges from 0 to 104. Given two entities, where one is an ancestor
of the other, the ancestor is a higher level entity and will have a smaller level indicator than the
other. The level indicator is absolute in the sense that it specifies the exact number of significant
bits used for the peer group ID. PNNI levels are not dense, in the sense that not all levels will be
used in any specific topology. A peer group with an ID of length 'n” bits, may have a parent peer
group whose identifier ranges anywhere from 0 - n-1 bits in length. Similarly a peer group with
an ID of length ‘'m” bits may have a child peer group whose identifier ranges from m+1 to 104 bits
in length.

4.3.2 Peer Group Identifiers

A peer group identifier is a string of bits between zero and 104 bits (13 octets) in length. Peer
group identifiers must be prefixes of ATM End System Addresses such that the organisation that
administers the peer group has assignment authority over that prefix. For example, if an organ-
isation is given an n-bit prefix, it may assign peer group identifiers with length n or greater, but
not less than n.

Peer group identifiers are encoded using 14 octets; a 1 octet (8 bit) level indicator followed by
13 octets of identifier information. The value of the level indicator must be between zero and 104
(bits). The value sent in the identifier information field must be encoded with the 104-n right most
bits set to zero, where n is the level.

4.3.3 Node Identifiers

The Node Identifier is twenty-two octets in length, and consists of a one octet level indicator
followed by a twenty one octet value which must be unique within the routing domain. The level
of a node is the same as the level of its containing peer group. Two methods for creating nodelDs
are currently defined.

For nodes which do not represent a peer group:

23

e the level indicator specifies the level of the node’s containing peer group.

e the second octet takes the value 160; this helps distinguish this case from the case below
since an encoded peer group ID cannot begin with this value.

e the remainder of the node ID contains the twenty one octet ATM End System Address of the
system represented by the node.

For a logial node which represents a child peer group say A.2 in its parent peer group A:

e the level indicator specifies the level of the peer group containing the LGN (i.e., the level of
peer group A)

¢ the next 14 octets are the encoded peer group ID of the child peer group A.2

e the next 6 octets contain the End System Identifier (ESI) of the physical system implementing
the logical group node functionality.

o the last octet of the nodelD is zero.

4.3.4 Host Identifiers

The Host Identifier is twenty octets in length, it consists of the 13 octet switch prefix and the 6
octet ESI and the SEL 1 octet.

4.3.5 A Hierarchical example

The example shown in Figure 4.2 illustrates how the addresses could be assigned, however this
example is not complete in all respects.

A.1.1 and A.1.2 are the peer groups at the lowest level and the addresses of the nodes in these
peer groups are as shown,

Peergroup A 1.1
Al1l1 96: 160: 47000580f f e1000000f 21a2e06. 08002009f 5f 4. 00
Al.1.2 96: 160: 47000580f f e1000000f 21a2e05. 00e02924787f . 00

Peergroup A 1.2
Al21 96: 160: 47000580f f e1000000f 21a2f 06. 006097109b31. 00
Al.2.2 96: 160: 47000580f f e1000000f 21a2f 05. aa000400f dc 3. 00

Note that the above peer groups have a level indicator of 96 which means that the first 12
bytes of all the nodes in the peer group will be the same. The hosts connected to these nodes will
inherit the switch prefix from the node they are connected to and they will have their own ESI,
their addresses could be

Host A1.1.1.1 47000580f f e1000000f 21a2e06. 000400d88b8d. 00
Host A1.1.1.2 47000580f f e1000000f 21a2e06. 08002b39c847. 00
Host A 1.2.2.1 47000580f f e1000000f 21a2f 05. 08002b9c0d5d. 00

Now these peer groups are represented by the logical nodes A.1.1 and A.1.2 in the next hierar-
chical level. Their addresses are

24

Figure 4.2: An Hierarchical Example

Peergroup A 1
LGN A1l 1 88: 96: 47000580f f e1000000f 21a2e00. 00e02924787f . 00
LGN A 1.2 88: 96: 47000580f f e1000000f 21a2f 00. 006097109b31. 00

These logical group nodes have a level of 88 which means the first 11 octets of all the nodes
in this peergroup will be the same. The logical group nodes have an encoded 14 octet peer group
identifier as explained above. The ESI for these nodes will be that of the physical system imple-
menting the logical group node functionality.

At the next level of hierarchy, the peer group A.1 is represented in peer group A by the logical
group node A.1, the address of A.11is

Peergroup A
LGN A1 80: 88: 47000580f f e1000000f 21a0000. 006097109b31. 00

The above example explains how addresses could be assigned in a multiple peer group hier-
archical model.

25

Chapter 5

A Glance of Information Database
Structure

5.1 How Information Database is constructed ?

5.1.1 Whatis Flooding Mechanism ?

The flooding mechanism is the way that a node discovers the resource information of other n-
odes. Every node generates its own PTSEs with the initial information, and floods them out to its
neighbor node in the form of packet called PTSP.

The PTSP packet includes these following elements:

e Originating Node ID
e originating Peer group ID
e alist of PTSEs

The PTSP is received by another node. The node determines whether it should update its
database using resource information contained in the PTSE. After that, the PTSE is flooded again
to another neighbor node. The flooding still continues until all the nodes have the same database.

5.1.2 How the Database is constructed ?

The database is constructed by receiving PTSEs from the flooding mechanism and adding the
resource availability information which is extracted from PTSEs into its database.

5.1.3 When the resource availability information in the Database is invalid ?

In order to guarantee that a call connection is successful, the resource information used by the
router must be valid. To assure the validity of the information, the Database should be updated
or refreshed at a particular time. The database will be updated when there is a significant change
of the resource. Otherwise, the database should be refreshed by again flooding out its resource
availability information similar to that in the initialization phase. The latter case is periodically in-
voked and the period is specified by the product of PTSELifetimeFactor and PTSERefreshInterval
parameters.

26

5.2 What is inside the Information Database ?

The Information Database is a collection of PTSE!

5.2.1 What are inside the PTSE ?

e Type
It indicates which restricted information groups are allowed to appear inside of the PTSE

(see Section 5.14.9 in PNNI specification for details)

e Identifier
When a node originates multiple PTSEs, each describes different pieces of the node’s envi-
ronment.

e Sequence Number
It indicates which PTSE is “more recent” when multiple PTSEs simultaneously exist.

e Checksum
It indicates whether the received PTSE is corrupted.

e Age (Time to Live)
It is specified by the product of PTSERefreshinterval and PTSELifetimeFactor

e List of Resource Available Information Group
It contains all link and nodal information groups.

(for more details, see section 5.8.2.2 in PNNI v1.0 specification)

5.3 When the Database must be updated.

The database can be updated with these events:

e Significant change of resource availability

¢ Expiration of Database

5.3.1 The Significant Change of Resource Availability Information

The significant change detection is the method to assure the sufficient resource availability of the
connection when it is established.

Since every node has its own database which is similar to every node after the initialization
phase. When the node make a call connection, its resource availability is decreased. However, the
resource availability information in others nodes is not changed. If the availability is significantly
changed, the call routed which the “old” information will be failed by the connection admission
control (CAC). So the PNNI is handled this situation by flooding a new PTSE with a new PTSE
containing a new resource availability information in order to update the Database of other nodes.

Note that it also happens in the case that a node releases a call connection. Its resource avail-
ability is increased, and it verifies whether the change is significant or not.

The significant change is detected before and after allocating or deallocating the resource. If
the node finds that its resource availability is significantly changed, it will create a new PTSE
containing new information represented in an Resource Availability Information Group (RAIG)
element. Then, the new PTSE is flooded out to the network.

27

5.3.2 The Expiration of Database

The database of a node should not exist for such a long time when there is no significant change
in the node. Therefore, the database should be updated periodically.

The PNNI v1.0 specification gives us two parameters to specify the “age” of database, PTSERe-
freshinterval and PTSELifetimeFactor.

PTSERefreshInterval is the time between re-origination of a self-originated PTSE in the absence
of triggered updates. The node will re-originate its PTSEs at this rate to prevent flushing of these
PTSEs by other nodes.

PTSELifetimeFactor is a multipliable factor used to calculate the initial lifetime of self-originated
PTSEs. The initial time is set to the product of the PTSERefreshInterval and the PTSELifetimeFac-
tor.

The defaults of PTSERefreshInterval and PTSELifetimeFactor are 1800 seconds and 200equals
to the product of those two parameters. Therefore, the default value of the database age is 3600
seconds. Note those time are simulation time.

54 How the Database is updated

5.4.1 What to do when a node receives a new PTSE ?
e Look if the node already has that PTSE in its Database.
e If yes, then look at the PTSE age.

— If the PTSE age is expired, delete the existing PTSE from the Database.

— If no, (this indicates an re-originated PTSE). delete the existing PTSE from the Database
and insert a new one into its Database. After that, flooding the new PTSE to its neighbor
node(s).

e If no, (this indicates the first PTSE it receives.) create an entry for the new PTSE and insert
the entry into the database. After that, flood the new PTSE to neighbor node.
5.4.2 What to do when the Database is expired ?
e Delete the “old” PTSE and tell other nodes to delete it also by flooding a “dummy” PTSE
with the expired age.
5.4.3 What to do when the Database needs to be refreshed ?

e Retrieve each PTSEs in the Database.

e Create a copy of the PTSE retrieved from the database. However, this new PTSE has the
higher sequence number of PTSE and the new age which is specified by the product of
PTSELifetimeFactor and PTSERefreshInterval parameters.

e Flood the new PTSE out

28

Chapter 6

Architecture

The KU PNNI network simulation architecture has been developed on Bellcore’s Q.port software.
For simulations, Q.port’s real time based scheduling mechanism is modified to support a virtual
time based scheduling mechanism. In the Q.port software Q.93B signaling module is extended
to support an additional PNNI information element, Designated Transition Lists (DTL). Naval
Research Laboratory (NRL)’s ProuST PNNI architecture, is interfaced with Q.Port for providing
the PNNI routing subsystem module. Detailed models of simulation model is provided in the
section 6.1.

6.1 Simulation

The Q.Port signaling software’s scheduling architecture was modified to provide the simulator
capability. In this architecture, all of the switch and host modules involved in the simulation
register with a single instance of a core-reactor class as shown in the Figure 6.1.

The functions the core reactor class offers are as follows:

o Registering and dispatching multiple timer events: The Reactor module holds a pointer to the
timer manager. All the modules associated in a switch or host when request for register-
ing a timer, request the reactor through the schedule-timer interface it provides. The reactor
forwards these requests to the timer-manager which it owns.

e Posting multiple Q.Port internal messages: The Reactor supports the posting of the internal
messaging between different Q.Port modules. When the Q.Port modules need to post mes-
sages, they call the post ticket interface of the reactor. The reactor forwards this to the ticket-
dispatcher which it owns.

Since all the Q.Port modules of different switches now report to one common reactor sched-
uler, Q.Port can support a single schedule oriented, discrete event simulator. In Figure 6.1 a new
class SimKernel is added to schedule the events to either a specified duration of time or until the
simulation ends with no more events to be scheduled. The SimKernel class maintains virtual time
which is updated whenever a timer event is scheduled. The ticket dispatcher is a class which
schedules the tickets registered. The tickets are events which are either the timer events or the
inter Q.Port module messaging events. The Input/Output (I/O) manager registers a ticket with
the ticket dispatcher for scheduling timer events and the I/O events. Since in the simulation there
is no interprocess communication involved, the I/O manager is modified to avoid checking for
the input data from the other processes and all the I/O manager tickets are used to service the
simulation timer events. The timer events are scheduled by the timer manager, which calls the

29

-_——_— = = - = = = = F—_———— = — — = a F—_———— = = — = q -_———_—a == = = =

: Q.Port g‘ass_ hru Q.Port ' pass_thru! Q.Port dass_q‘hru Q.Port :

| |

| I H H | |

| HOST ‘Llnk: SWITCH : Link : SWITCH :Llnk‘ HOST |

| | | |

| | : : : : | !

| | | | | | | |

777777 T I I I I I

L 1 L 1

r-—-—-=—--- |- - - - - - - - - - - - -"-"-"-" -~ -~ - -" =" -" " - - -"~©~r-. - -"-" " =" -"-" - “-"=9\=-T—-—"=—==-=°=- |
| |
| (W |
| |
: REGISTER TIMER REACTOR POST TICKETS :
| L CORE J !
| |
| |
| . |
! Register Timer post message ticket |
! priority(1) [
| |
: Service Timer SimKernel :
: Update Time :
| |
| |
| |
: Service Timer :
: post ticket(priority 0) :
: TIMER TICKET :
. | MANAGER /O MANAGER DISPATCHER |
: service 1/0 or Timer :
| |
| |
I service timer service [
| |
| message |
| |
| |
} SERVICE SERVICE |
| || TIMER MODULE | vessace | [© |
| |
| |
| |
| |
| |

Figure 6.1: KU PNNI Simulator Model

handle-timeout interface of the module which registered the timer. The message events are han-
dled by the the Ticket-Dispatcher which calls the process interface of the message ticket which was
posted.

6.1.1 Simulation Kernel

A simulation kernel class SimKernel is added which is used to schedule simulator events. It in-
teracts with the timer manager for scheduling timer events. It maintains virtual time for the sim-
ulation. This virtual time is used by the other modules while registering new timer events. The
I/O Manager class is interfaced with the class SimKernel to schedule timer events when the reactor
is running in the simulation mode. The SimKernel’s service routine is used to schedule the timer
events. It schedules the next event if the next event’s scheduled virtual time is less than the dura-
tion of the simulation. It updates the current time to the time, the current event is scheduled to be
run.

30

6.1.2 Priority of Servicing

Two levels of priority are used for scheduling the events. They are:

e Priority 1: The events generated by inter Q.Port module messaging are assigned level 1 pri-
ority which is the highest priority. The messaging between the Q.Port modules Switch Call
Control(SCC), PNNI Routing Service (PNNI RS), Static Router, and the Fabric are modified
to suit this priority.

e Priority 0: This is the low level priority assigned to the servicing of the timer events.

With this priority setup, the tickets posted for messages are first cleared and only when this
queue is empty, the queue for timers is serviced. This helps in processing an incoming message
completely through different protocol stacks. Timer interrupts are secondary to processing a mes-
sage in hand. There is provision for adding additional priorities if required.

6.1.3 Simulation of Link and Queueing Delays

The Simulation model includes simulation of links between the ports of nodes and hosts. Simula-
tion of link delays, queueing delays, and queue length is also included.

6.1.3.1 Simulation of Links Between Ports

The ATM Adaptation Layer 5 (AAL5) module of the Q.Port is the bottom of the signaling stack
and represents the port which can be connected to the peer AALS5. This module is modified for
the simulator to know before hand, the object pointer of the peer AALS object. To each AALS, the
peer AALS5 object pointer is specified during booting up of the configuration. When a data needs
to be transferred to the peer AALS5, the SendToPeerAal5 method passing the data to the peer entity
is called. This connectivity of links between simulator ports is labelled as pass_thru link.

6.1.3.2 LinkDelays and Queuing delays

The simulation model supports queueing of packets. These packets could be the Q.93B signaling
packets encoded within the Qsaal PDUs or PNNI Route Control Channel(RCC) packets. The AAL5
class has been modified to support a queue length which could be specified during configuration.
Packets which arrive after the queue count exceeds the queue length are dropped. The queuing
delay on the packets is also supported. This is done by multiplying the queue size in the switch’s
ports at the time of arrival of a packet by the mean processing delay. This processing delay can be
configured. A measure of the processing delay is obtained by measuring the average time taken
over processing of a large number of switch events. The link delay is added to the queuing delay,
making the total delay before the packet is taken up for processing. The link delay is configurable
and the AAL5 module is modified to include this information. Hence when a packet comes to
the AAL5 module from the other side of the link the cumulative delays (Queuing delay and Link
Delay) are measured and a timer is started with this time. When the timer expires, the AAL5
module takes up the packet for processing, giving it to the next stack in the protocol hierarchy.

6.1.4 Control Flow within Simulation Kernel

The working of the simulation kernel is best described by looking at the flow of control wihthin
the various modules described above. We will describe the basic nature of event driven virtual

31

time simulation and enumerate the stages of its execution within the simulation kernel. This is
shown in Figure 6.2.

6.1.4.1 Event Driven Virtual Time Simulation

A discrete event-driven simulation is a popular simulation technique. Objects in the simulation
model objects in the real world, and are programmed to react as much as possible as the real
objects would react. A priority queue is used to store a representation of “events” that are waiting
to happen. This queue is stored in order, based on the time the event should occur, so the smallest
element will always be the next event to be modeled. As an event occurs, it can spawn other
events. These subsequent events are placed into the queue as well. Execution continues until all
events have been processed.

The Q.Port reactor has been re-structured to support the above notion of events queue and
virtual time of event execution.

| EventHandler (derived) ‘ Messaging PRODUCING Layer

post_message()
start_timer()
handle_timeout() Messaging CONSUMING Layer

process_message()

Reactor |mplementation

Registey Timer Interface Posy Message I nterface

J Message Queue PRIORITY 1 Message Dispatcher

- process messages()

TimerQueue Event Handler

process all_timers() Message Queue PRIORITY 0

(PRIORITY 1first,

reschedule_myself() then PRIORITY 0)

Virtual Time Queue 1

increasing Virtual Time

Figure 6.2: Control Flow within Simulation Kernel

6.1.4.2 Walk Through

We begin by describing virtual time model. It consists of:

32

. Reactor Implementation: This has two interfaces that allow registering of timer events and
message events. These are used by the modules to register timers and pass messages to each
other.

. Post Message Interface: This is interface by which software modules talk with each other.
For instance, whenever the Switch Call Control module wants to invoke the Router module,
it would pass a message to the router module using the Post Message interface.

. Register Timer Interface: This is used by modules to instantiate timers. These modules de-
rive from the EventHandler base class which has the functionality to start_timer().

. Message Dispatcher: This is where the MAIN thread of execution runs. It has several mes-
sage queues which are categorized on the message PRIORITY. In this imlementaiton, we
have two message priorities (0 and 1). The Message Dispatcher runs in a loop that picks up
events from the Message Queues, in order of decreasing priority and calls the appropriate
“process_message()” function.

. Timer Queue: This is the timer event queue that gets tagged with timer events registered
using the Register Timer Interface. Processing of this queue involves invoking the han-
dle_timeout() function present in the EventHandler that registered the timer in the first place.

. TimerQueue Manager: This is the module that manages the virtual Timer Queue. It has the
concept of Virtual Time and represents the virtual time heart beat of the simulator. When
the simulation kernel is instantiated, an initial seed message is posted from this moduel to
the Message Queue. This message is intended for the timer manager itself. In this way,
it reschedules itself. The process_message funciton of the TimerQueue Manager does the
following:

¢ find the next expiration from the timer queue.
o if the expiration time is beyond the STOP_SIMULATION time, stop the simulation

e else update the current SIMULATION_TIME with the next expiration value and pro-
cess_all_times().

e the process_all_timers function invokes the call back functionality for all timers that
expire at the current simulation time

e finally the TimerQueue Manager reschedules itself by posting a message to itself in the
PRIORITY 0 Message queue.

. Derived EventHandlers : These are the software modules that use the simulation kernel.
They inherit the virtual functions allowing them to “start_timer()” and “handle_timeout()”
in the manner best suited to their functionality.

. Message PRODUCING Layer : This is the best way to describe the software module that
calls “post_message” to send a message to another layer. This message could well be to
itself.

. Message CONSUMING Layer : This is the best way to describe the software module whose
“process_message” function is called when ever it receives a message from another layer
(which could be itself !!).

33

6.1.4.3 Distinction between instant and delayed messages

The above flow of control does not consider whether the Message PRODUCING Layer is logically
on the same “simulated entity” as the Message CONSUMING Layer. In other words, the produced
message is delivered in ZERO virtual time to the consuming layer.

In order to introduce the concept of “simulated link delays”, the messages that flow between
PROCUDER layer on one simulated entity (a switch) to its peer CONSUMER layer on another
simulate entity (another switch/host), are first encapsulated within Timer Events. The way this
works is as follows:

Consider the standard situation where the AALS layer on one switch wants to communicate
to the AALDS5 layer on another switch.

o first the PRODUCER AALS layer encapsulates the message within a TimerEvent.

e the TimerEvent is tagger with the delay on the link between the PRODUCER and CON-
SUMER and then registered using the start_timer call.

¢ the TimerEvent is delayed by the the virtual time it takes to reach the destination, and when
that timer pops, the handle_timeout function is called.

e the PRODUCER AALS handle_timeout function now passes the message to the destination
AAL5 module.
6.1.4.4 Simulating Other Switch Processing Delays

The virtual time model needs to be accounted for in terms of delays induced due to processing
within the switch. In order to do this, we use a technique similar to the AAL5 message passing
between peer AAL5 modules on different switches.

Take the case of Routing Delays. Here, we have to account for the delay in getting the result of
a routing request. The way this is done is as follows:

e when the router gets the request we take a time stamp of real (machine) time.
e the router processes the request.

e we take another time stamp and calculate the real routing delay.

e we also take in a user defined “routing_time” from the input script.

o if the user has defined a routing_time, we start a TimerEvent and seed it with the routing
time. Else, we seed the TimerEvent by the real routing delay.

e the TimerEvent is scheduled and it pops and calls the handle_timeout function after the
“routing_time” duration.

e the handle_timeout function now passes the result of the routing decision to the module that
requested the route.

34

6.1.5 Q.Port Switch Call Control

The Switch Call Control is a module within Q.port. Every instance of a switch there is an SCC
instance, which is aware of the Switch Fabric and also the Q.93b stacks running on each port of
the switch. In addition the SCC interacts with the Router module (which can be a static, table
lookup router, or a PNNI router module) to get information regarding the next hop for every call
that comes in from one of the in-ports. All in all, the SCC is the heart of the switch instance, and
controls the call activity within the switch.

The Figure 6.3 shows the different states that exist for a call within the switch along with the
transitions that occur between the states when messages are posted to the SCC.

6.1.5.1 SCC Finite State Machine

The SCC has a Finite State Machine that models the call/connection within the switch. In addi-
tion, each call is associated with a call record that retains information about the call state. This is
the method by which the SCC is able to control and coordinate the calls/connections.

States and their meaning:

1. IDLE state - represents the condition when a call connection request arrives into the SCC and
is allocated a callrecord. It also represents the state that the call returns to after call clearing,
and before the callrecord is destroyed.

2. PENDING ROUTE state - signifies that the SCC has contacted the Router module and given
it called party information. There can be two router types:

e Static Router: is contacted to parse the called party information, when the SCC finds
that the called party number is reachable without having to go across a NNI interface.

e Pnni Router: is contacted either when the SCC realises that to reach the called party
number the NNI is to be used, or when the call progresses from one NNI to another.

SCC waits for a acknowledge message from the router module in which is contained the port
that the call/connection needs to be forwarded to for the next hop to reach the final called
number.

3. PENDING RESOURCE RESERVE state - is reached by a call when the SCC sends a resource
reservation request to the Fabric class for the next hop that this call must proceed to.

The SCC waits for a acknowledge message from the fabric class containing the handle to the
connection object within the fabric. This handle contains information about the VPI/VCI
used for the outgoing call request and is used for future interactions for the call connection
in the fabric. Now, the SCC propagates the call request, via the Q.93B stack of the port that
is connected to the next hop /switch.

4. PENDING TERM CONFIRM state - is reached after the call has been forwarded onto the
next hop/node and before that node sends a response back. The response can be either:

e accepts the connection request by sending a call proceeding or a call connect message

e rejects the connection request with a call release message.

35

. PENDING RESOURCE CONNECTED state - is reached by the call after the an accept is
received from the terminator. The fabric has contacted for finalizing the connection, by con-
necting the originating and terminating connection objects.

. PENDING ORIG CONFIRM state - is specified only for switches that uses Interim Inter-
Switch Signalling Protocol (IISP). We use the PNNI protocol for inter-switch signalling. So
we do not discuss it here.

. ACTIVE state - is reached once the call connect message arrives and the fabric acknowledges
that the originating and terminating sides are connected. Now, the SVC is set up and call
can proceed.

. CLEARING RESOURCE state - occurs during the tear down of a connection or error cas-
es, when the resources allocated in the fabric for this call request need to be deallocated.
The connection objects of the two sides of the connection are destroyed by the fabric and
acknowledgment sent to the SCC.

. CLEARING PEERS state - is the intermediate state that is reached for clearing that side
of the call that did NOT initiate the tear down. In other words, depending on which side
initiated clearing, the opposite side is torn down and bookkeeping and deallocation is done.
This arises because of the asynchronous nature of the connection states/messages.

36

(d@s11 Auo)

NHIINOD
9140
ONIAN3d

powL U0 IBUUBORS N

Yo wvioeuycOoLgeis N
<

A3103aNNOD
304NOS3H
ONIAN3d

pajosuu0l | OGS N

NYIINOD
NF3L

ONIAN3d ¥oeNnesaYo Lges N

o'=ismadbuliesp HLIM AyoN|eDOBs

EIN-ESE]
304dN0s3d

ONIAN3d

(saseo Joue ou *** AjUo ** umop Jeal pue dniss [[eo [ewloN)

peuyuodssERRdIRIBSIN . U IYJe [N 91.]S a1IuH :|0Ju0D |[eD Ydlms

0141080S INNd ~at -+« - - - - -

ase) PWION -——————

Yoves|DogeBs N

304NOS3Y
ONIFIV310

SY33d
ONIFV310

youvs .
1XeN 01 PRIN0Y 'S1asuodsay I |leOBu Ioou MO NBS I
SN0 VRO INBS IUUBS N 21n0Y \>
g0 ONIANZd
aIN0YYOVIRINOBS N “ _a.mAm.w Emw I T v

uoiRUNSIQ S| 8SUOTSIY I
AINOYD OIS IUUBS N

Figure 6.3: Switch Call Control Finite State Machine

37

Chapter 7

Crankback and Alternate Routing

When the call is failed to route to the destination, crankback mechanism is executed to handle the
call failure. In addition, the alternate routing mechanism is executed to find an alternate route in
corporation with the crankback mechanism. In this chapter, we discuss the process of crankback
to handle the call failure in Section 7.1, and the alternate routing mechanism is described in Sec-
tion 7.2

7.1 Crankback Mechanism

When the call request is unable to route to the destination host, the call is crank-backed. When
the crankback occurs at the intermediate node, the call request is released. The node sends the
RELEASE or RELEASE COMPLETE message back the previous node from which the call request
is received. If the crankback occurs at the destination host, the RELEASE COMPLETE message
with Crankback object is sent back to the source node. If the crankback occurs at the intermediate
node, the RELEASE message with Crankback object is sent back to the source node along the
routed path.

The release message returns to the source node using the path that call request is previously
routed. When the release message arrives at the source node, the alternate routing mechanism is
performed. The alternate routing mechanism is described in Section 7.2.

A call can be rejected by two reasons. First, the reject can be because of the failure of node.
The failure can be that the node is failed to support the call request on its incoming port, or the
node is down. Therefore, the call is blocked. This type of blocking is called BlockedNode [1]. Below
shows the code how to create the Crankback object to collect the failure data when the call is failed
because the intermediate node blocks the call.

Cr ankbackEl enent * crankback =
new Cr ankbackEl enent (

peer | evel, /1 the level of crankback
Bl ockedNode, /1l blocked transit types
copyf Nodel D, /1 the blocked node id.
Transi t Net wor kUnr eachabl e //cause of crankback

)

Second, the call can be rejected because the node cannot support the call request on its outgoing
port. This could be that the link between this node and the next destination node is failed to

38

support the call request. The failure can be that the link is down, or the link does not have enough
resource to support the call request. Therefore, this type of blocking is called BlockedLink [1].

Below shows the code how to create the Crankback object to collect the failure data when the
call is failed because the link is blocked.

CrankbackEl emrent * crankback =
new Cr ankbackEl ement (

peer level, [/ the level of crankback
Bl ockedLi nk, // blocked transit types
precNodeld, // the precedi ng Node
bl ockedPort, // the blocked port of the link to succNode
succNodeld, // the succeedi ng Node
Transi t Net wor kUnr eachabl e // cause of crankback

)

7.2 Alternate Routing Mechanism

When the release arrives at the source node, the release message is processed at the Switch Call
Control (SCC) module. First, SCC checks whether the call can be routed again using alternate
routing mechanism or not by determining the alternate route retry number that is setup by the
network operator. We describe the alternate routing mechanism in two cases. Section 7.2.1 shows
the alternate routing mechanism when the call can be routed again. Section 7.2.2 describes when
the call cannot be routed because the number of route retries exceeds a limit. In Section 7.2.3, the
alternate routing at the intermediate node is described.

7.2.1 Source Node Does Alternate Routing

After checking the alternate route retry number, the call can be routed again if the number does
not exceed the limit. The limit is set by the user using crankback_retries parameters, and it can be
specify in the input script. See more details of how to use this parameter in the Appendix A.

After the route retry number is checked, and the source node receive the release message from
the terminating side, SCC sends the clear_req message to Fabric module to release the call request.
Then SCC goes to TRY_ALTERNATE_ROUTE state waiting for the response from the Fabric. After
get the response clear_ack from Fabric, SCC prepares the route_req in order to request an alternate
route from the PNNI router module. Then SCC goes to PENDING_ROUTE state waiting for the
response from the PNNI route module. The response from the PNNI router can be categorized
into two cases for alternate routing.

In the first case, the PNNI router is able to find an alternate route for the call. Therefore, the
PNNI router sends the route_ack message with the AlternateRoute response to SCC as shown in
Figure 7.1. Then the SCC sends the reserve_ack message to Fabric module to reserve the resource
for this call and to request VPI/VCI for the alternate route. Then SCC goes to PENDINGRE-
SOURCERESERVATION state waiting for the confirmation from Fabric.

If the reserve is successful, Fabric will send the reserve_ack message back to SCC as shown in
Figure 7.1. And then SCC increases the number of alternate route retry and sends the setup_req
message to the terminating side to try the alternate route again, and it goes to PENDINGTERM-
CONFIRMATION state. However, SCC does not send the callproc_req to the originating side be-
cause this is an alternate routing for the call. The callproc_req message is already sent at the first
time of the call setup before the call is failed.

39

ALTERNATE ROUTE AT SOURCE
('successfully routed)

Q93B scc FABRIC ROUTER Q93B
PENDINGTERMCONFIRMA|TION
RELEASE
[

. — | relesse ind

| der e

TRY JALTERNATE_ROUTE
clear_ack

/ release previous

bandwidth here
——— | route req /
\

PENDINGROUTE
route_ack

(AlternateRoute) | ~—
Bl

reserve req

PENDINGRESOURCERESERVATION

reserve_ack

\ setup_req
\
. seTue

PENDINGTERMCONFIRMATIDN e

Figure 7.1: The SCC event trace when the alternate routing is successful at source node

Otherwise, the fabric reserve is failed, the Fabric will send the route_nak to SCC as shown
in Figure 7.2. Then the call will be released as regular release procedure. The SCC sends the
release_req message to the originating side and the release_resp message to the terminating side and
goes to CLEARINGPEERS state. After the SCC receives the release_conf message, it sends out the
release_resp message and goes to IDLE state.

In the second case, when SCC receives the failed call, it tries to find an alternate route by send-
ing the new route request to the PNNI router module. However, there can be no route available
for the alternate routing. Therefore, the PNNI router module will send the route_ack message with
the SourceCrankback response as shown in Figure 7.3. Then SCC needs to release this call. It sends
the release_req message to the originating side and the release_resp message to the terminating side
and goes to CLEARINGPEERS state. After the SCC receives the release_conf message, it sends out
the release_resp message and goes to IDLE state.

7.2.2 Source Node Rejects the Failed Call

In this case, the call is rejected because the number of route retries exceeds the limit. We do not
want to call to keep trying forever so we need to limit the number of the route retries. This number
can be set by the network operator and specified in the simulation input script.

The call reject procedure is shown in Figure 7.4. After the SCC receives the clear_ack message
from Fabric module, the SCC checks the route retry number. If exceeds, then the call have to be
released. It sends the release_req message to the originating side and the release_resp message to

40

ALTERNATE ROUTE AT SOURCE

(Fabric failed to reserve, Receive reserve_nak, release the call)

Q93B scc FABRIC ROUTER Q93B
PENDINGGTERMCONFIRMA(TION /
_ | — | RELEA=E
release_ind

| i
@

TRY_ALTERNATE_ROUTE

| der ek —
release bw here
| % / if alternate route

PENDIINGROUTE
route_ack /
reserve req

PENDINRESOURCERESERVATION
reserve_nak

recrve nak

[————— | release bw_req
.

\
e — |
y/ relesse rep | ——— | RELEASE
RELEASE COMPLETE
CLEARIINGPEERS e

\
RELEASE release_conf
COMPLETE

release_handle

IDLE

Figure 7.2: The SCC event trace when fabric reserve fails at source node

the terminating side and goes to CLEARINGPEERS state. After the SCC receives the release_conf
message, it sends out the release_resp message and goes to IDLE state.

7.2.3 Intermediate Node Actions

Figure 7.5 shows the procedure of releasing a call and setting up an alternate call if available. This
procedure is the same as the regular procedure of releasing and setting up a call.

41

Q3B

RELEASE

\
RELEASE
COMPLETE

release_handle

SCC

ALTERNATE ROUTE AT SOURCE

(Crankback at Source, Release the Call)

PENDIN

@

TRY_ALT

\

route_ack
(SourceCrankba|

\

CLEARINGPEERS

IDLE

FABRIC

ETERMCONFIRMA|

release_ind

FRNATE_ROUTE

route req

PENDI

L,

release_resp

ROUTER

TION

release bw here
/ if alternate route

NGROUTE

Q3B

.

RELEASE

RELEASE
COMPLETE

\

Figure 7.3: The SCC Event Trace when Crankback happens at Source Node

Q93B

RELEASE

4//////
\

RELEASE
COMPLETE

number of reties
exceeds the limit

T

release req

release_conf

\

r

Figure 7.4: The SCC event trace when the route-retry number exceeds the limit at source node

ALTERNATE ROUTE AT SOURCE

(number of route retries exceeds)

PENDIN

/
\

clear_req

\l

CLEARIN

s |
\

CLEARINGH

NULL

FABRIC

S5TERMCONFIRMA
release_ind

release_bw_req
\—)-

IGRESOURCE

release _resp

PEERS

ROUTER

TION

[N

42

Qu3B

RELEASE

RELEASE
COMPLETE
.

ALTERNATE ROUTE AT INTERMEDIATE NODE
(Call release and new call setup)

Q93B scc FABRIC ROUTER Q93B
PENDINGTERMCONFIRMA TION//
|] RELEASE
. release_ind
[dearreq >

CLEARIINGRESOURCE

release_req \release& RELEASE
RELEASE — COMPLETE
/ \

CLEARINGPEERS
T release_conf

RELEASE
release_handle IDLE

COMPLETE
—_]
SETUP setup_ind

route_req

\).

PENDINGROUTE
route_ack

reserve req
PENDINGRESOURCERESERVATION

reserve_ack
| feseveack
\
caL | Poese s |
| ——— .| setup

PROC
PENDINGTERMICONFIRMATION [

Figure 7.5: The SCC event trace shows the call failure and new (alternate) call setup at an interme-

diate node

43

Chapter 8

CallGenerator

The call generator enables the hosts involved in the experimentation to generate calls. The total
number of calls to be generated has to be specified. However, the calls can be also generated
without any upper limit on the number of calls by providing the value for the host component pa-
rameter calls as unspecified. This would enable call generation for the duration of the experiment.

The following call arrival distributions are supported:
e Poisson Distribution
e Uniform Distribution
e Periodic Distribution
The following additional call generation types are supported:

e Tear Down: In this type when a call connection is established, it is immediately torn down
and the the next call is attempted.

e Bursty: In this type, a new call connection is attempted, whenever a previous call gets estab-
lished.

The following call duration distributions are supported:
e Poisson distribution
e Uniform distribution
e Periodic distribution
The following call types are supported:
e CBR: Constant Bit Rate
e ABR: Available Bit Rate
e RTVBR: Real Time Variable Bit Rate
e NRTVBR: Non Real Time Variable bit rate
e UBR: Unspecified bit rate

The following QoS parameters for connection request are supported:

44

PCR: Peak Cell Rate

SCR: Sustainable Cell Rate

CTD: Cell Transfer Delay

CDV: Cell Delay Variation
e CLR: Cell Loss Ratio

The call connections can be made to explicit destinations be defining the probabilities for each des-
tination or by giving an option uniform_any which makes calls to all hosts defined in the topology
with uniform probability.

The call generator also supports multiple traffic sources with different QoS requirements as
part of the total number of the calls generated. QoS requirements are specified for individu-
al sources as shown in Appendix A, section A.4. The calls generated from each traffic can also
be specified as a percentage share of the total number of calls generated. When multiple traffic
sources are available, the calls are attempted with a common arrival distribution, and with indi-
vidual duration distributions.

45

Chapter 9

User Interface

9.1 Components of the PNNI ATM Network

The user interface language is designed based on the following different components that could
be present in an ATM network.

e Node: A node is an ATM switch which has ability to admit call connection requests and
provide PNNI dynamic routing.

e Host: A host is an ATM end system that provides call generation capability using a call
generator. Hosts connect to nodes.

e Links: Links provide connectivity between any two of the three components of an ATM
network mentioned above.

e [oad: Load defines the traffic characteristics of the host.

e Logical Node: This provides the information about the logical nodes at the higher levels in
the PNNI hierarchy

e Logical Connections: The connections between logical nodes are provided as Logical Connec-
tions

9.2 The User Interface

The simulator is provided with a common user input script interface. Using this script interface,
any required network topology can be specified. The design for this utility is as shown in figure
9.1

When the user specifies the network, a parser is used to parse the input and store the input
data into a data structure. There may be some default parameters left out by the user and these are
filled in by the conpl et e_user _ i nput () function. When the input configuration is complete,
the data structure is given to a simulation boot up program, which sets up the simulation.

The user interface for this tool is a simple language whose grammar and details are chronicled
in Appendices A and B. The user specifies an experiment in a text file like the sample input script
in program 9.1 that is parsed and processed by the simulation tool.

The following simple user input file is given to help the reader follow the generic explanation
in this section. More detailed descriptions will be specified in later sections.

46

Program 9.1 A Sample User Input Script

Paranmeter Dbl ocks
par anet er _bl ock node spark {

s

prop_const ant

f1 oodi ng_t hreshol d
calltrace
routing_policy
nunports
process_tinme
gueuesi ze

util | og _period

par anmet er _bl ock host newt on{

duration

cal I type

bw

calls

arrival _period
duration_period
gueuesi ze

host _process_time

Hs

Node definitions
node Amy{

par anmet er _bl ock spark,

50,

25,
true,
max__bw,

address = 0x4705f f ef 56000000000000001100000000000000

b

node Joe{

par amet er _bl ock spark,

address = 0x4705ffef 56000000000000002200000000000000

s

node Fred{

par aret er _bl ock spark,

address = 0x4705f f ef 56000000000000003300000000000000

s

node Pan{

par armet er _bl ock spark,

address = 0x4705f f ef 56000000000000004400000000000000

s

host Ken{

par anet er _bl ock newt on

address = 0x4705ffef 56000000000000001100ec301100aa00

s

47

host Bess{
par aret er _bl ock newt on

address = 0x4705ff ef 56000000000000004400ea120022bb00
b
Load definition
| oad Bess{
calls = unspecified,
arrival _distribution = peri odi c,
arrival _period = 10,

nundesti nati ons 1,
desti nations [Ken],
destn_prob = [1.0]

s

port genericport {bw=0Cl2, del ay=10};

Node - Node connections

connecti on Any->Joe{bw=300, ad_wei ght
connecti on Joe->Fred{bw=310, ad_wei ght
connecti on Fred->Pan{ bw=320};

Node - Host connections
connecti on Ken->Any{bw=300, ad_wei ght
connecti on Pam >Bess{bw=300, ad_wei ght

Schedul e of the experinent
schedul e{
duration

s

550

= 80},
= 90};

= 80},
= 80};

48

USER INPUT PNNI
SCRIPT PARSER
COMPLETE EMULATION NETSPEC
USER INPUT EMULATION
WRAPPER
SIMULATION
RUN NETSPEC
SIMULATION RUN
EMULATION
DISPLAY
RESULTS

Figure 9.1: Design of a User Interface to the Simulator

9.2.1 Components of User Input

The following components constitute the user input.

e Parameter blocks: This is generic information about various node parameters or host param-
eters that can be used as building blocks to build nodes or hosts in the experiment. Pro-
grammed default values will be used for any unspecified values in the script.

e Individual Node Information: This specifies the individual node information in addition to,
or different from, the generic node information specified previously using the parameter
blocks. Any parameter specified here will override the corresponding generic parameter
specified above for this node only. A node definition should contain the name and address
as mandatory parameters.

o Generic Port Information: This specifies the generic connection information shared by all links.
This includes bandwidth, administrative weight, link delay for the link associated with the
port and any other port-related parameters.

o Individual Host Information: This specifies the host information in addition to, or different
from, the generic host information specified previously. Any parameter specified here will
override the corresponding generic parameter specified above for this host only.

o Connectivity Information: This specifies the link between the network entities host and node.

49

The connectivity information optionally specifies the parameters related to the link between
the two sides. Any parameter specified with the connectivity information will override the
value for corresponding parameter specified under the generic port information.

o Load Characteristics: This specifies the traffic characteristcis of a host, the information about
the calls to be generated.

e Logical Nodes: This specifies the level of the logical node and the node in the immediate lower
level in the hierarchy which the LGN represents.

e Logical Connections: This specifies the properties of the logical connections between the logi-
cal nodes.

e Schedule of events: This specifies the duration of the experiment and the events we’d like to
simulate in the experiment namely node failure or link failure. This also includes the random
seed which is used for the random number generator in the simulator and the simple or
complex representation to be used for Nodal Representation in Hierarchical PNNI.

9.2.2 User Input Restrictions
Required Parameters: The following parameters must be specified in a user script.
e Individual node Information
¢ Individual node to node connectivity information
e Logical node information for hierarchical PNNI
e Logical connectivity information for hierarchical PNNI
e The schedule of the experiment with the duration parameter as mandatory
Optional Parameters: The following components are optionally specified in a user script.
e Parameter blocks for defining the general node or host parameters
e The generic port information
e Individual host information
e Individual load information for a host
e Individual host to node connectivity information

Parameter Order: The parser allows parameters to come in any order in the script to make it easier
for the user. However, the following restrictions apply (Note: These restrictions are not reflected in
the BNF grammar in Appendix B).

e The required order of components, if included, should be: definition of nodes, hosts, ports,
connections in any order but followed by a schedule for the experiment.

e In a simulation, do not include hostpool information

e The paramater block information for node must precede any individual node information

50

e The paramater block information for host must precede any individual host information
e The generic port information must precede any individual connection information
e The load information for any host should be given only after the definition of the host itself.

e In hostinformation, (both generic and individual) you can specify multiple sources. In doing
so, you must specify the number of sources before giving any source-specific information.
This is necessary because this information is used to allocate the required memory to store
the source-specific information.

e The logical nodes and logical connections should come after the physical nodes and connec-
tions and in the decreasing order of their levels.

Unimplemented Features and Limitations: The following features have the noted limitations or
are as of yet unimplemented.

e ATM PVC and SVC (unimplemented)

51

Chapter 10

Nomenclature, Keywords and Syntax

This section describes the keywords and syntax to further help the user get familiar with the
interface. Some of the keywords which are used but unexplained in the descriptions should be
ignored until they are explained later.

10.1 Naming Conventions

The names of nodes and hosts can be arbitarary strings, we have moved away from conventions
C1, H1 etc. Also we can have multiple hosts connected to a node. According to specifications, the
nodes within a peer group should have the same prefix and all hosts connected to a switch share
the same prefix with only their hardware addresses different. The definition of a node or a host
should contain the node name and the address as mandatory parameters.

10.2 Statement

A statement assigns the component specific details to a component group. The format of a state-
ment and several examples are given below. The white spacing between the words of a statement
is ignored and each statement is ended by a semicolon.

component group component (parameters);

Examples:

1. physical hosts hostpool (hostl, host2, ... hostN);

2. parameter_bl ock node spark (paraneterl, paraneter2, ... paraneterN);
3. parameter_bl ock host newton (paraneterl, paraneter2, ... paraneterN);
4. port genericPortinfo (paraneterl, paraneter2, ... paranmeterN);

5. node nodel(paraneterl, paraneter2, ... paraneterN);

6. host hostl1l(paraneterl, paraneter2, ... paraneterN);

7. connection nodel->hostl (paraneterl, paranmeter2, ... paraneterN);

8. load host1l(paraneterl, paraneter2, ... paraneterN);

9. logicalnode A 1 (paraneterl, paraneter2, ... paraneterN);

10. | ogical connecti on A 1->A 2{ paraneterl, paraneter2 };

52

10.3 Component Group

This specifies the group of components to which this statement belongs. The component groups
specified by the following keywords.

e node: The node group includes the parameter block information and individual node infor-
mation. These parameter blocks represent a set of parameters that nodes have in common, so
that this common information does not need to given in the definition of every node, instead
this block can be used as the base building block. Examples for each are shown below:

Parameter block for node

par anet er _bl ock node spark {

prop_const ant = 50,

fl oodi ng_t hreshol d = 25,
calltrace = true,
routing_policy = max_bw,
nunports = 14,
process_tinme = 1.0,
gueuesi ze = 5000,
util _l og_period = 0

b
Individual node information

node nodel{
par armet er _bl ock spark,
address = 0x4705ffef 56000000000000001100000000000000

b

e port: The port group includes the generic port information. An example is shown below:

Generic port information
port = genericPortlnfo (bw=0Cl2, ad_wei ght=3);

e host: The host group includes the parameter block information and individual host informa-
tion. Examples for each are shown below.

Parameter block for host

par anmet er _bl ock host newt on{

duration = 100,
cal l type = chr,
bw = 100,
calls = 0,
arrival _period = 5,
duration_period = 10,
gueuesi ze = 5000,
host _process_tine = 3.0
¥

53

Individual host information

host host 1{
par amet er _bl ock newt on,
address = 0x4705ffef 56000000000000001100ec301100aa00

b

connection: The connection group includes connectivity information which could be either
a connection between two nodes or a connection between a host and node. For the topol-
ogy, all node-node connections and host-node connections have to be given in the scrip-
t.Examples of each are shown below.

Connection between two nodes

connecti on = nodel->node2(bw=50, del ay=5);
Connection between a host and an node

connecti on = nodel->host 1(del ay=50);

Load characteristics: The traffic characteristics for each host can be defined as follows.

load information

| oad host 2{
calls = unspeci fi ed,
arrival _distribution = periodic,
arrival _period = 10,
nundesti nati ons = 1,
destinations = [host 1],
destn_prob = [1.0]
b

logicalnode The logical node definition consists of the child peer group leader that the Logical
Group Node represents and the level of the logical node, a sample definition is provided here

| ogi cal node A. 1{
| evel = 88,
child = A 1.2
1

logicalconnection The Logical connection consists of the delay of the logical link and the
number of connections that the logical link represents.

| ogi cal connecti on A 1->A 2{ delay = 25 };
schedule of events: The duration of the experiment, the events like node and link failures can
be given here. Also, the random seed and the nodal representation to be used for aggregation

are provided here, the 'mpg’ flag has to be defined here for running Multiple Peer Group
experiments. schedule

54

schedul ef

duration = 550,

seed = 1234,
nodal _represent = conpl ex,
npg = true,

nodefail nodel

3

10.4 Additional Syntax

Some additional syntax information associated with the language is given in the table 10.1 below.

‘ syntax ‘ Explanation ‘

{ begins component parameters

} ends component parameters

, separates parameters

= assigns values to parameters or component groups
; concludes a component statement

> links two nodes or a host and an node together

Table 10.1: Syntax table

55

Chapter 11

Examples

11.1 A Ring Topology Configuration

11.1.1 Simulation

Figure 11.1 depicts a eight node ring topology network. In the figure, Denver to LosAngel es
are nodes, and Host 4 to Host 7 are the hosts connected to the nodes. The user script to obtain
the above topology is shown in program 11.1. Some of the important parameters in par ane-
t er bl ock node are explained here. For details please refer to Appendix A.

o prop_constant: This specifies the value for the PNNI proportional multiplier which deter-
mines the significant change in link topology information.

e flooding_threshold: This determines the minimum threshold of bandwidth for flooding link
topology information.

e process_time: This is the average time in milliseconds in which an event is processed in the
node.

e duration: This specifies the duration of the simulations in seconds.

The parameter_block node is named as spar k and all nodes inherit the properties of this block.
The individual properties of the node must be explicitly specified in addition to these parameters.

The generic information related to the hosts are provided with the par anet er _bl ock host
identifier. The explanations for some of the important parameters are provided below.

e calls: This specifies the number of calls attempted (15).
e arrival_period: This indicates the inter-call-arrival duration (5 seconds).

e bw: This specifies the bandwidth requested per call (10 KB), the bandwidth could have a
distribution like fixed, uniform or poisson.

e duration_period: This indicates the call duration (10 seconds).

Note that the parameters specified with the par anet er bl ock host keyword are generic
to all of the hosts in the simulation, i.e., to hosts Host 4 to Host 7 in this topology. To explain
explicitly, Host4 makes 15 calls to Host6 and Host5 generates 15 calls to Host7 with an inter-
arrival call period of 5 seconds and call duration of 10 seconds. Calls could be made to multiple
destinations also.

56

Host4

Host7 LosAngeles Sandiego Chicago Kansas Host5

Newyork

Washington

Host6

Figure 11.1: An Eight Node Ring topology

The generi cport information specifies the generic connectivity parameters for links be-
tween ports of PNNI network entities.

The ring topology is created by connecting the nodes using the connecti on component
group identifier as specified in connecti on = Denver - >Col or ado lines. Note that since all
these connections are specified with no optional parameters, they use the parameters specified
with the generi cport identifier. This means that the connections have a link bandwidth of 622
Mbps (OC12 link rate) and a link delay of 10 milliseconds.

The results produced by the ring topology simulation are shown in section 11.1.1.1. The se-
quence of the results is explained below. Please relate it to the output shown.

e Individual Host Call Records: Here for each host, a log is generated which shows the statistics
including the call type (ex: cbr), bandwidth requested (ex: 808.992 kbps), call start time, call
connect time, the call setup time, results of the call attempt (ex: success), and cause of failure
if any. These logs also show the percentage call success, the bandwidth rejection (the sum of

57

Program 11.1 An Eight Node Ring Topology Simulation Script

sinple ring topol ogy

par armet er _bl ock node spark {

s

node

node

node

node

prop_const ant = 25,
fl oodi ng_t hreshol d = 5,
calltrace = true,
routing_policy = max__bw,
nunports = 14,
process_tinme = 1.0,
util _l og_period = 10,
gueuesi ze = 5000
par amet er _bl ock host newt on{
duration = 100,
cal l type = cbr,
bw = 10,
arrival _period = 5,
durati on_peri od = 10,
gueuesi ze = 5000,
host _process_time = 3.0
b
Denver {
par armet er _bl ock spark,
address = 0x4705ffef 56000000000000001100000000000000
1
Chi cago{
par amet er _bl ock spark,
address = 0x4705ffef 56000000000000002200000000000000
NewYor k{
par amet er _bl ock spark,
address = 0x4705ffef 56000000000000003300000000000000
3
SanDi ego{
par armet er _bl ock spark,
address = 0x4705ffef 56000000000000004400000000000000
1
Col or ado{

node

par amet er _bl ock spark,
address = 0x4705ffef 56000000000000005500000000000000

s

58

node Kansas{
par aret er _bl ock spark,
address = 0x4705ffef 56000000000000006600000000000000

s

node Washi ngt on{
par amet er _bl ock spark,
address = 0x4705ffef 56000000000000007700000000000000

b

node LosAngel es{
par amet er _bl ock spark,
address = 0x4705ffef 56000000000000008800000000000000

s

host Host 4{
par amet er _bl ock newt on
address = 0x4705ffef 56000000000000005500ec3011001100
b
host Host 5{
par anet er _bl ock newt on
address = 0x4705ffef 56000000000000006600ec3011002200
3
host Host 6{
par anet er _bl ock newt on
address = 0x4705ffef 56000000000000007700ec3011003300
b
host Host7
par aret er _bl ock newt on
address = 0x4705ffef 56000000000000008800ec3011004400

s

| oad Host 4{
calls = 15,
nundesti nations = 1,
destinations = [Host 6],
destn_prob = [1.0]

s

| oad Host 5{
calls = 15,
nundesti nations = 1,
destinations = [Host7],
destn_prob = [1.0]

}s

59

port genericport {bw=0Cl2, del ay=10};

connecti
connecti

connecti
connecti

connecti
connecti

connecti
connecti

connecti
connecti
connecti
connecti

schedul e
durati on

s

on
on

on
on

on
on

on
on

on
on
on
on

{

Denver->Col orado { bw = OC12 };
Denver - >Chi cago { bw = OCl12 };

Chi cago- >Kansas { bw = OC12 };
Chi cago- >NewYor k { bw = OC12 };

NewYor k- >Washi ngton { bw = OC12 };
NewYor k- >SanDi ego { bw = OC12 };

SanDi ego- >LosAngel es { bw = OC12 };
SanDi ego- >Denver { bw = OC12 };

Host 4- >Col orado { bw = OCl12 };

Host 5- >Kansas { bw = OC12 };
Host 6- >Washi ngt on { bw = OC12 };
Host 7- >LosAngel es { bw = OC12 };
150

60

the bandwidth requested by the rejected calls) and the average call setup time.

e Average Host Call Records: Here the average results statistics for calls attempted from all the
hosts in the experiment are shown.

e Individual Node Records: Here the individual node related logs are shown. They are:
— convergence time: This indicates the time when a node obtains all the initial topology

information generated by the other nodes in the topology.

— total floods: This specifies the total number of PNNI topology information messages
generated by a node.

— total wasted floods: This specifies the total number of redundant topology information re-
ceived at a node. The topology messages are considered redundant when the topology
information which they carry is already present in a node and hence ignored.

— avg hops: The average number of links traversed by a connection request for a successful
call.

— source failed calls: The calls which failed at the source node due to non availability of a
route which satisfies the call bandwidth requirements.

— intermediate hop failed calls: The calls which failed at an intermediate node due to non-
availability of bandwidth at the next hop.

— average routing time: The average clock time taken to compute a route using a routing
algorithm.

pnni data sent: The PNNI total topology data bytes sent from a node.

utilization logs: This shows the link utilization at each of the links.

e Average Node Records: This specifies the average node results statistics calculated over all of
the nodes in the experiment.

11.1.1.1 Simulation Results

e First we present the standard output that is printed when the simulator is run.
% . / kupnni
Usage: kupnni [OPTIONS]... scriptfile

KU PNNI Simul ator, University of Kansas

OPTI ONS:
-1, --log out put an event-level log into individual files
-q, --quiet suppress printing of event-level |log onto the screer
-d, --debug=[LEVEL] debug infornation
-c, --copyright copyright information
-V, --version version infornmation
-h, --help print this nmessage and exit

LEVEL controls the nature of debugging information

61

values: [none | brief | internediate | full]

By default, debug level is none, results are printed to stdout,
and no log files are produced.

Report bugs to pnni @ttc. ukans. edu

o Next, if the script presented above were in the filer i ng. scri pt ,the output of the simulator
for the following command line would be:

% ./ kupnni ring.script

---- WELCOME TO KU PNNI SI MULATOR----

I nformati on and Tel econmuni cat i on Technol ogy Center (I1TTC)

Uni versity of Kansas Center for Research, Inc.

Copyright (C) 1998

by the University of Kansas Center for Research, Inc.

This software was devel oped by the Information and Tel ecommuni cati on
Technol ogy Center (ITTC) at the University of Kansas. | TTC does not
accept liability whatsoever for this product. Please see the detailed
COPYRI GHT notice within the distribution. This version is for Sprint
internal research use only. It is NOT to be redistributed.

For enquires, please contact:
Dr. Dougl as N ehaus <ni ehaus@ttc. ukans. edu>
or
KU-PNNI Group <pnni @ttc. ukans. edu>

The Q port(TM signaling software, herein known as the "Software", is
the copyrighted work of Bellcore. The Software has been nodified by
the University of Kansas Center for Research, Inc. Information and

Tel econmruni cati on Technol ogy Center for use with the Virtual ATM
(VATM switch for ATM on Linux which is copyrighted work of University
of Kansas Center for Research, Inc. Information and Tel ecomruni cation

62

Technol ogy Center (ITTC). The nodified Software is nade avail able for
downl oadi ng solely for use by end users. Reverse engineering of the
nodi fied Software or any other type of tanpering and/or infringenent
is expressly prohibited by law, and may result in severe civil and
crim nal penalties.

Qport is a trademark of Bellcore.

SinKernel: Simulation ended in simtime 000150. 000000
Duration of simulation is 3 seconds

Type CTRL-C to end the process. Thanks.

Avg PROCESSI NG TI ME 000000. 000259

Over Total events 9829

Host Recor dFi | e. out put contains Host information

Swi t chRecor dFi | e. out put contains Switch information

Li nkRecor dFi | e. out put contains Link information

Det ai | edLi nkRecor dFi | e. out put contains Detail ed Link information

Cal I traceRecordFil e. out put contains Calltraceinformation infornmation
Net wor kRecor dFi | e. out put contai ns Network information

*xxxx CALL SETUP LOGS START ******

-- Host4 host record begins ----------mmmm o

No. calltype bw(kbps) starttine stopti ne setuptinme result cause
1 cbr 26. 9664 00:00: 10. 000 00:00:10.250 000.250000 setup
2 cbr 26. 9664 00:00: 15.000 00:00:15.136 000.136000 setup
3 cbr 26. 9664 00:00: 20. 000 00:00:20.139 000.139000 setup
4 cbr 26. 9664 00:00: 25.000 00:00:25.136 000.136000 setup
5 cbr 26. 9664 00:00: 30. 000 00:00:30.139 000.139000 setup
6 cbr 26. 9664 00:00:35.000 00:00:35.136 000.136000 setup
7 cbr 26. 9664 00:00:40.000 00:00:40.139 000.139000 setup
8 cbr 26. 9664 00: 00:45.000 00:00:45.136 000.136000 setup

9 cbr 26. 9664 00: 00: 50. 000 00:00:50.139 000.139000 setup
10 cbr 26. 9664 00:00: 55.000 00:00:55.136 000.136000 setup
11 cbr 26. 9664 00:01: 00.000 00:01:00.139 000.139000 setup
12 cbr 26. 9664 00:01:05.000 00:01:05.136 000.136000 setup
13 cbr 26.9664 00:01:10.000 00:01:10.139 000.139000 setup
14 cbr 26. 9664 00:01:15.000 00:01:15.136 000.136000 setup
15 cbr 26. 9664 00:01:20.000 00:01:20.139 000.139000 setup

total cbr calls . 15

% successfull cbr calls . 100
total cbr bw request (MB) : 0.404496
cbr bw rejected (MB) .0

63

mean cal l setup tine : 000. 144999

-- Host4 host record ends ----------------------------

-- Host5 host record begins ------------------------------

No. calltype bw(kbps) starttine stoptine

cbr 26. 9664 00: 00: 10. 000 00: 00: 10. 272
chr 26. 9664 00: 00: 15. 000 00: 00: 15. 136
chr 26. 9664 00: 00: 20. 000 00: 00: 20. 139
chr 26. 9664 00: 00: 25. 000 00: 00: 25. 136
chr 26. 9664 00: 00: 30. 000 00: 00: 30. 139
cbr 26. 9664 00: 00: 35. 000 00:00: 35.136
chr 26. 9664 00: 00: 40. 000 00: 00: 40. 139
cbr 26. 9664 00: 00: 45. 000 00:00: 45. 136
9 cbr 26. 9664 00: 00: 50. 000 00: 00: 50. 139
10 cbr 26. 9664 00: 00: 55. 000 00:00: 55.136
11 cbr 26. 9664 00: 01: 00. 000 00:01:00.139
12 cbr 26. 9664 00: 01: 05.000 00:01:05.136
13 cbr 26. 9664 00: 01:10.000 00:01:10.139
14 cbr 26. 9664 00: 01:15.000 00:01:15.136
15 cbr 26. 9664 00:01:20.000 00:01:20.139

0O~NO O, WN P

total cbr calls . 15

% successfull cbr calls : 100

total cbr bw request (MB) . 0.404496
cbr bw rejected (M) 0

nean cal |l setup tine : 000. 146466

setuptinme

000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.

272000
136000
139000
136000
139000
136000
139000
136000
139000
136000
139000
136000
139000
136000
139000

-- Host5 host record ends ----------------------------

AVG RESULTS OF ALL CALLS

total cbr calls : 30

% successfull cbr calls : 100

total cbr bw request (MB) : 0.808992
cbr bw rejected (MB) .0

mean call setup tine : 000. 145733

* kkkk CALL SETUP L% END kkkkkhkkk*k*x

NODE | NSTRUVENTATI ON LOGS START

resul t
setup
setup
setup
setup
setup
setup
setup
setup
setup
setup
setup
setup
setup
setup
setup

-- Denver node record begins ------------------------------

convergence tine : 000000. 090000
total fl oods : 184
total wasted fl oods : 54

64

cause

avg hops

source failed calls

calls routed successfully

Internediate hop failed calls :

calls confirmed from dest

CRANKBACKS

avg routing tinme

pnni data sent (kbytes)

---utilization |logs start

Total core bandw dth

tinme

000010. 000000
000020. 000000
000030. 000000
000040. 000000
000050. 000000
000060. 000000
000070. 000000
000080. 000000
000090. 000000
000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

Denver - >Chi cago avg utilization :
Denver - >SanDi ego Tot al Bw 1800

000010. 000000
000020. 000000
000030. 000000
000040. 000000
000050. 000000
000060. 000000
000070. 000000
000080. 000000
000090. 000000
000100. 000000
000110. 000000
000120. 000000
000130. 000000

[eNeoNeoNeoNeoNoNoNoNoNolNolNolNolNolNe]

[eNeoNeoNeoNoNoNolNolNolNolNolNolNo)

used_bw(nmbps)
Denver - >Chi cago Tot al Bw 1200

L1272
. 1272
L1272
. 1272
L1272
. 1272
. 1272
. 0636

OO O0OO0OO0ODO0OUITOO0OOOO0OO0OO0OO0o

[eNeolNoNeoNololNololoelNolollolNe)

OO Er oo
[¢)

0
000000. 000000
24. 664

. 000106
. 000106
. 000106
. 000106
. 000106
. 000106
. 000106
. 3e-05

9. 9375e- 05

65

000140. 000000 O

000150. 000000 O
Denver - >Col orado Tot al Bw 600
000010. 000000 O
000020. 000000 0.1272
000030. 000000 0.1272
000040. 000000 0.1272
000050. 000000 0.1272
000060. 000000 0.1272
000070. 000000 0.1272
000080. 000000 0.1272
000090. 000000 0. 0636
000100. 000000 O
000110. 000000 O
000120. 000000 O
000130. 000000 O
000140. 000000 O
000150. 000000 O

Denver - >Col orado avg utilizati
avg utilization 0. 0001325
----utilization | ogs end----

Denver node record ends

Chi cago node record begins

convergence time

total floods

total wasted fl oods

avg hops

source failed calls

calls routed successfully

Internediate hop failed calls :

calls confirmed from dest
CRANKBACKS

avg routing tine

pnni data sent (kbytes)

---utilization |logs start

Total core bandw dth 1800
time used_bw(nmbps)

Chi cago- >Denver Tot al Bw 600

o

. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000106

[eNeoNeoleoNolNolNololNoelNolololololo]

on : 0.00019875

000000. 091000
186

55

0

0

30

0

0

0

000000. 000000
25. 376

66

000010.
000020.
000030.
000040.
000050.
000060.
000070.
000080.
000090.
000100.
000110.
000120.
000130.
000140.
000150.

Chi cago- >Denver avg utilization :
Chi cago- >NewYor k Tot al Bw 1800

000010.
000020.
000030.
000040.
000050.
000060.
000070.
000080.
000090.
000100.
000110.
000120.
000130.
000140.
000150.

Chi cago- >NewYor k avg utilizati
Chi cago- >Kansas Tot al Bw 1200

000010.
000020.
000030.
000040.
000050.
000060.
000070.
000080.
000090.
000100.

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

[eNeoNeoNeoNoNoNoNoNolNoNolNolNolNoNe]

[eNeoNeoNoNoNoNeoNolNolNolNolNolNolNolNo]

eNeoNeoNeoNeoNoNolNolNolNe]

L1272
. 1272
L1272
L1272
. 1272
L1272
. 1272
. 0636

. 2544
. 2544
. 2544
. 2544
. 2544
. 2544
. 2544
. 1272

L1272
. 1272
L1272
. 1272
L1272
. 1272
L1272
. 0636

. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000106

[eNeoNeoNeoNolNolNololNolNolololololNo]

0. 00019875

. 000141333
. 000141333
. 000141333
. 000141333
. 000141333
. 000141333
. 000141333
. 06667e- 05

OO 000 O0O~NOOOOOOOoOOo

on : 0.0001325

. 000106
. 000106
. 000106
. 000106
. 000106
. 000106
. 000106
. 3e-05

O UT O O0OO0OOO0OO0O0O0o

67

000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

cNeoNeoNelNe

Chi cago- >Kansas

0. 000265
| ogs end----

avg utilization
----utilization

record ends

Chi cago node

NewYor k node record begins

convergence tine

total floods

total wasted fl oods

avg hops

source failed calls

calls routed successfully

Internmediate hop failed calls :

calls confirmed from dest
CRANKBACKS

avg routing tine

pnni data sent (kbytes)

---utilization |logs start

Total core bandw dth 1800
time used_bw(nmbps)

NewYor k- >Chi cago Tot al Bw 600

000010. 000000 O
000020. 000000 0. 2544
000030. 000000 0. 2544
000040. 000000 0. 2544
000050. 000000 0. 2544
000060. 000000 0. 2544
000070. 000000 0. 2544
000080. 000000 0. 2544
000090. 000000 0.1272
000100. 000000 O
000110. 000000 O
000120. 000000 O
000130. 000000 O
000140. 000000 O

avg utilization :

O OO oOo

9. 9375e- 05

000000. 091000
193

49

0

0

30

0

0

0

000000. 000000
25. 936

. 000424
. 000424
. 000424
. 000424
. 000424
. 000424
. 000424
. 000212

eNeoNeoNeoNolNoNolNolNolNolololollo]

68

000150. 000000 O 0

NewYor k- >Chi cago avg utilization : 0.0003975
NewYor k- >SanDi ego Tot al Bw 1800

000010. 000000

000020. 000000 L1272 . 06667e-05
000030. 000000 . 1272 . 06667e- 05
000040. 000000 L1272 . 06667e-05
000050. 000000 . 1272 . 06667e- 05
000060. 000000 L1272 . 06667e-05
000070. 000000 . 1272 . 06667e- 05
000080. 000000 L1272 . 06667e-05
000090. 000000 . 0636 . 53333e-05

000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNeoNoNoNoNoNoNolNolNolNolNolNe]
O OO0 OO0 WNNNN~NNANO

NewYor k- >SanDi ego avg utilization : 6.625e-05
NewYor k- >Washi ngt on Tot al Bw 1200

000010. 000000

000020. 000000 L1272 . 000106
000030. 000000 L1272 . 000106
000040. 000000 . 1272 . 000106
000050. 000000 L1272 . 000106
000060. 000000 . 1272 . 000106
000070. 000000 L1272 . 000106
000080. 000000 . 1272 . 000106
000090. 000000 . 0636 . 3e-05

000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNeoNoNoNolNoNolNoNolNolNolNolNe]
[eNeoNeoNeoNolNolNd Noloelololololole]

NewYor k- >Washi ngton avg utilization : 9.9375e-05

avg utilization : 0.000265
----utilization | ogs end----

-- NewYork node record ends --------------------------------

-- SanDi ego node record begins ------------------------------

69

convergence tine

total floods

total wasted floods

avg hops

source failed calls

calls routed successfully

Internediate hop failed calls :

calls confirnmed from dest
CRANKBACKS

avg routing tinme

pnni data sent (kbytes)

---utilization logs start ----
Total core bandwi dth : 1800

time used_bw(nmbps)
SanDi ego- >Denver Tot al Bw 1800

000010. 000000
000020. 000000
000030. 000000
000040. 000000
000050. 000000
000060. 000000
000070. 000000
000080. 000000
000090. 000000
000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000
SanDi ego- >NewYor k Tot al Bw 600

[eNeoNeoNoNoNoNoNolNoNolNolNolNolNo)

o

000010. 000000 O

000020. 000000 0.1272
000030. 000000 0.1272
000040. 000000 0.1272
000050. 000000 0.1272
000060. 000000 0.1272
000070. 000000 0.1272
000080. 000000 0.1272
000090. 000000 0. 0636
000100. 000000 O

000110. 000000 O

000000. 092000
192

46

0

0

15

0

0

0

000000. 000000
26. 412

[eNeoNeoNeoNolNolNololNolololololole]

. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000106

eNeolNeoNolNolNolNolNolNolNolol

70

000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNe]
o OoOoo

SanDi ego- >NewYor k avg utilization : 0.00019875
SanDi ego- >LosAngel es Tot al Bw 1200

000010. 000000

000020. 000000 . 1272 . 000106
000030. 000000 L1272 . 000106
000040. 000000 . 1272 . 000106
000050. 000000 L1272 . 000106
000060. 000000 . 1272 . 000106
000070. 000000 L1272 . 000106
000080. 000000 L1272 . 000106
000090. 000000 . 0636 . 3e-05

000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNeoNoNeoNolNoNolNoNolNolNolNolNo]
OO O0OO0OO0DO0ODUITOO0OO0OO0OOOO0Oo

SanDi ego- >LosAngel es avg utilization : 9.9375e-05

avg utilization : 0.0001325
----utilization |ogs end----

-- SanDi ego node record ends --------------- oo

-- Col orado node record begins ------------------------------

convergence tine : 000000. 097000
total floods : 31

total wasted fl oods : 19

avg hops C 4

source failed calls 0

calls routed successfully : 15
Internmediate hop failed calls : O

calls confirmed from dest 0

CRANKBACKS 0

avg routing tine : 000000. 002538
pnni data sent (kbytes) . 3.372

---utilization logs start ----

Total core bandwidth : 600

71

tinme

Col or ado- >Denver Tot al Bw 600

000010.
000020.
000030.
000040.
000050.
000060.
000070.
000080.
000090.
000100.
000110.
000120.
000130.
000140.
000150.

used_bw(nmbps)

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

[eNeoNeoNeoNoNoNolNoNolNoNolNolNolNolNe]

Col or ado- >Denver

avg utilization

----utilization | ogs end----

L1272
L1272
. 1272
L1272
. 1272
L1272
. 1272
. 0636

avg utilization

[eNeoNeoNeoNolNolNololNolNolololololNo]

0. 00019875

---Call Tracing starts----

Call No: Trace by

1Col or ado.

2Col or ado.

3Col or ado.

4Col or ado.

5Col or ado.

6Col or ado.

7Col or ado.

8Col or ado.

9Col or ado.

10Col or ado.

Node Nunber

Denver.

Denver.

Denver.

Denver.

Denver.

Denver.

Denver.

Denver.

Denver.

Denver.

Chi

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000212
. 000106

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor K.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

72

0. 00019875

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.

ngt on.

11Col or ado. Denver. Chi cago. NewYor k. Washi ngt on.
12Col or ado. Denver. Chi cago. NewYor k. Washi ngt on.
13Col or ado. Denver. Chi cago. NewYor k. Washi ngt on.
14Col or ado. Denver. Chi cago. NewYor k. Washi ngt on.
15Col or ado. Denver. Chi cago. NewYor k. Washi ngt on.

---Call Traci ng ends----

-- Col orado node record ends --------------------------------

-- Kansas node record begins ------------------------------

convergence tine : 000000. 103000
total floods : 33

total wasted fl oods » 21

avg hops : 4

source failed calls 0

calls routed successfully : 15
Internmediate hop failed calls : O

calls confirnmed from dest 0

CRANKBACKS 0

avg routing tine : 000000. 002903
pnni data sent (kbytes) . 3.468

---utilization logs start ----

Total core bandwidth : 600

tinme used_bw(nmbps)
Kansas- >Chi cago Tot al Bw 600

000010. 000000 O 0
000020. 000000 0.1272 0. 000212
000030. 000000 0.1272 0. 000212
000040. 000000 0.1272 0. 000212
000050. 000000 0.1272 0. 000212
000060. 000000 0.1272 0. 000212
000070. 000000 0.1272 0. 000212
000080. 000000 0.1272 0. 000212
000090. 000000 0. 0636 0. 000106
000100. 000000 O 0
000110. 000000 O 0
000120. 000000 O 0

73

000130. 000000 O 0
000140. 000000 O 0
000150. 000000 O 0

Kansas- >Chi cago avg utilization : 0.00019875

avg utilization 0. 00019875

----utilization | ogs end----
---Call Tracing starts----

Cal |

No: Trace by Node Nunber

1Kansas.

2Kansas.

3Kansas.

4Kansas.

5Kansas.

6Kansas.

7Kansas.

8Kansas.

9Kansas.

10Kansas.

11Kansas.

12Kansas.

13Kansas.

14Kansas.

15Kansas.

Chi cago

Chi cago

---Cal |l Traci ng ends----

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor K.

NewYor K.

NewYor K.

NewYor K.

NewYor K.

NewYor K.

NewYor k.

NewYor k.

SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.

SanDi ego.

LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.

LosAngel es.

Kansas node record ends

-- Washi ngt on node record begi ns

74

convergence tine : 000000. 104000

total floods : 31

total wasted fl oods : 20

avg hops 0

source failed calls 0

calls routed successfully . 15

I nternmediate hop failed calls : O

calls confirmed from dest 0

CRANKBACKS 0

avg routing tinme : 000000. 000000
pnni data sent (kbytes) © 2.984

---utilization logs start ----

Total core bandwidth : 600

time used_bw(nmbps)

Washi ngt on- >NewYor k Tot al Bw 600
000010. 000000

000020. 000000 . 1272 . 000212
000030. 000000 . 1272 . 000212
000040. 000000 . 1272 . 000212
000050. 000000 . 1272 . 000212
000060. 000000 . 1272 . 000212
000070. 000000 . 1272 . 000212
000080. 000000 . 1272 . 000212
000090. 000000 . 0636 . 000106

000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNeoNoNoNoNoNeoNolNolNolNolNoNe]
[eNeoNeoNeoNolNolNolNolNololololololo]

Washi ngt on- >NewYor k avg utilization : 0.00019875

avg utilization : 0.00019875
----utilization | ogs end----

-- Washington node record ends --------------------------------

-- LosAngel es node record begins ------------------------------

convergence tinme : 000000. 105000
total fl oods . 32
total wasted fl oods 21

75

avg hops

source failed calls

calls routed successfully :
Internediate hop failed calls :
calls confirmed from dest
CRANKBACKS :

avg routing tinme : 000000. 000000
pnni data sent (kbytes) : 3.032

[cNeoNoN _NelNel

---utilization logs start ----
Total core bandwi dth : 600

time used_bw(nmbps)
LosAngel es->SanDi ego Tot al Bw 600

000010. 000000

000020. 000000 L1272 . 000212
000030. 000000 . 1272 . 000212
000040. 000000 L1272 . 000212
000050. 000000 . 1272 . 000212
000060. 000000 L1272 . 000212
000070. 000000 . 1272 . 000212
000080. 000000 . 1272 . 000212
000090. 000000 . 0636 . 000106

000100. 000000
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNeoNeoNoNoNoNoNolNolNolNolNoNe]
[eNeoNeoNeoNolNolNoloNololololololNo]

LosAngel es->SanDi ego avg utilization : 0.00019875

avg utilization : 0.00019875
----utilization | ogs end----

-- LosAngel es node record ends -------------------------~---~----

AVG NODE RECORDS

convergence tinme |ow : 000000. 090000
convergence tinme high : 000000. 105000
avg hops : 4

total floods : 882

total wastedfl oods : 285

pnni bw | ow © 2.984

76

pnni bw hi gh © 26.412
total pnni data(kbytes) . 115. 244

NODE | NSTRUVENTATI ON LOGS END

e Finally, with the -1 option, the simulator will create the following files with the results
segregated into: Note: the output has been modified to format/fit a printable page.

1. HostRecordFile.output contains Host information

Host CoS Total Calls Successful _call (% Total BWReq(nbps) BWRejecte
Host 4 CBR 15 100 0. 954 0
Host5 CBR 15 100 0. 954 0

Host nean_call _set_up_tine(nsec)
Host 4 000. 146466
Host 5 000. 144999

2. SwitchRecordFile.output contains Switch information

Switch Conv_Time T_Flood T_WFlood Avg_Hops Call s_Requested Src_Fa
Denver 000. 900000 184 54 0 15 0
Chi cago 000. 910000 186 55 0 30 0
NewYor k 000. 9210000 193 49 0 30 0
SanDi ego 000. 920000 192 46 0 15 0
Col or ado 000. 970000 31 19 4 15 0
Kansas 000. 103000 33 21 4 15 0
Washi ngton 000. 104000 31 20 0 15 0
LosAngel es 000. 105000 32 21 0 15 0
Switch Calls_Routed Inter_Fail Crankbacks Alt.Routed Calls_Confirned
Denver 15 0 0 0 0

Chi cago 30 0 0 0 0

NewYor k 30 0 0 0 0

SanDi ego 15 0 0 0 0

Col or ado 15 0 0 0 0

Kansas 15 0 0 0 0

Washi ngt on 15 0 0 0 0
LosAngel es 15 0 0 0 0

Switch Avg Routing_Time PNNI _data_sent Avg_ Utilization

Denver 000. 000000 24. 664 0. 01325
Chi cago 000. 000000 25. 376 0. 0265
NewYor k 000. 000000 25. 936 0. 0265
SanDi ego 000. 000000 26. 412 0. 01325
Col or ado 000. 253800 3.372 0. 019875
Kansas 000. 290300 3. 468 0. 019875
Washi ngton 000. 000000 2.984 0. 019875

77

LosAngel es 000. 000000 3. 032 0. 019875

Legend: Switch represents the node for which the report is being generated
Conv_Time is the time when a node obtains all the initial topology information gener-
ated by the other nodes in the topology

T_Flood is total number of PNNI topology information messages generated
T_W_Flood is total number of REDUNDANT PNNI topology information messages
generated

Avg_Hops is the the average number of links traversed by a connection request for a
successful call

Calls_Requested is count of number of call requests that the node got

Source_Fail is count of number of call requests that got rejected at this node
Calls_Routed is count of number of call requests that this node successfully forwarded
Inter_Fail is count of number of call requests that got rejected

further down in the network by subsequent nodes

Crankbacks is count of number of crankbacks that this node serviced

Alt.Routed is count of number of Alternate Routes that were generated at this node
Calls_Confirmed is count of number of call requests that were confirmed to have been
setup

Avg_Routing_Time is average time taken to compute a route using a routing algorithm
in seconds

PNNI_data_sent is the total PNNI topology data bytes sent from a node

Avg Utilization shows the link utilization averaged over all links out of this node

. LinkRecordFile.output contains Link information

Li nk Total Peak Utilization Avg Utilization(%
Denver - >Chi cago 1200 0.1272 9. 9375e-05
Denver - >SanDi ego 1800 O 0

Denver - >Col orado 600 0.1272 0. 00019875
Chi cago- >Denver 600 0.1272 0. 00019875
Chi cago- >NewYor k 1800 0. 2544 0. 0001325
Chi cago- >Kansas 1200 0.1272 9. 9375e- 05
NewYor k- >Chi cago 600 0. 2544 0. 0003975
NewYor k- >SanDi ego 1800 0.1272 6. 625e- 05
NewYor k- >\Washi ngt on 1200 0.1272 9. 9375e- 05
SanDi ego- >Denver 1800 O 0

SanDi ego- >NewYor k 600 0.1272 0. 00019875

78

SanDi ego- >LosAngel es

Col or ado- >Denver

Kansas- >Chi cago

Washi ngt on- >NewYor k

LosAngel es->SanDi ego

1200

600

600

600

600

0.1272

0.1272

0.1272

0.1272

0.1272

9. 9375e-05

0. 00019875

0. 00019875

0. 00019875

0. 00019875

. CalltraceRecordFile.output contains Calltraceinformation information

---Call Tracing starts----

Calls from Node Col orado

Cal |

10

11

12

13

14

15

No:

Trace by Node Numnber

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Col or ado.

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Denver .

Calls from Node Kansas

Chi cago.

79

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor K.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

Washi

ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.
ngt on.

ngt on.

Call No:

10

11

12

13

14

15

Trace

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas.

Kansas

by Node

. Chi cago.

---Cal |l Traci ng ends----

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

cago.

Nunber

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor k.

NewYor K.

NewYor K.

NewYor K.

NewYor K.

NewYor K.

NewYor K.

NewYor k.

NewYor k.

SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.
SanDi ego.

SanDi ego.

. NetworkRecordFile.output contains Network information

*xxx% CALL SETUP LOGS START ******

cal l type
CBR
CBR
CBR
CBR
CBR
CBR
CBR

Det ai | ed Host4 host

record begins

bw(kbps) starttine
63. 6 00: 00: 10. 000
63. 6 00: 00: 15. 000
63. 6 00: 00: 20. 000
63. 6 00: 00: 25. 000
63. 6 00: 00: 30. 000
63. 6 00: 00: 35. 000
63. 6 00: 00: 40. 000

80

stopti
00: 00:
00: 00:
00: 00:
00: 00:
00: 00:
00: 00:
00: 00:

ne

10.
15.
20.
25.
30.
35.
40.

250
136
139
136
139
136
139

LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.
LosAngel es.

LosAngel es.

setuptime
000.
000.
000.
000.
000.
000.
000.

250000
136000
139000
136000
139000
136000
139000

result
set up
set up
setup
set up
setup
set up
setup

cau

CBR 63. 6 00:00:45.000 00:00:45.136
CBR 63. 6 00: 00:50. 000 00:00:50.139
CBR 63. 6 00:00:55.000 00:00:55.136
CBR 63.6 00:01: 00.000 00:01:00.139
CBR 63.6 00:01:05.000 00:01:05.136
CBR 63.6 00:01:10.000 00:01:10.139
CBR 63.6 00:01:15.000 00:01:15.136
CBR 63.6 00:01:20.000 00:01:20.139

000.
000.
000.
000.
000.
000.
000.
000.

136000
139000
136000
139000
136000
139000
136000
139000

-- Host4 host record ends ----------------------------

set up
set up
set up
set up
set up
set up
set up
set up

-- Detailed Host5 host record begins ---------------------------

calltype bw(kbps) starttine stopti ne

CBR 63. 6 00:00:10.000 00:00:10.272
CBR 63. 6 00:00:15.000 00:00:15.136
CBR 63. 6 00:00:20. 000 00:00: 20.139
CBR 63. 6 00:00:25.000 00:00:25.136
CBR 63. 6 00:00:30.000 00:00:30.139
CBR 63. 6 00:00:35.000 00:00:35.136
CBR 63. 6 00:00:40.000 00:00:40.139
CBR 63. 6 00:00:45.000 00:00:45.136
CBR 63. 6 00:00:50.000 00:00:50.139
CBR 63. 6 00:00:55.000 00:00:55.136
CBR 63.6 00:01:00.000 00:01:00.139
CBR 63.6 00:01:05.000 00:01:05.136
CBR 63.6 00:01:10.000 00:01:10.139
CBR 63.6 00:01:15.000 00:01:15.136
CBR 63.6 00:01:20.000 00:01:20.139

setuptinme

000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.
000.

272000
136000
139000
136000
139000
136000
139000
136000
139000
136000
139000
136000
139000
136000
139000

-- Host5 host record ends ---------------------~-------

AVG RESULTS OF ALL CALLS

total cbr calls . 30

% successfull cbr calls : 100

total cbrbw request (nb) : 1.908
cbrbw ej (nmb) .0

mean call setup tine : 000. 145733

*kkk*k CALL SETUP Lm END kkkkhkhkkk*k*x
NODE | NSTRUVENTATI ON LOGS START
AVG NODE RECORDS

convergence tinme |ow : 000000. 090000
convergence tinme high : 000000. 105000

81

result cau
set up
setup
set up
setup
set up
setup
set up
setup
set up
setup
set up
set up
setup
set up
setup

avg hops 4

total floods . 882
total wastedfl oods : 285

pnni bw | ow : 2.984
pnni bw hi gh . 26.412
total pnni data(kbytes) © 115. 244

NODE | NSTRUVENTATI ON LOGS END
. DetailedLinkRecordFile.output contains Detailed Link information

-- Denver node record begins --------------------oooo--
---Detailed utilization logs start ----

Total core bandwi dth : 1800

time used_bw(nmbps) % of total

Denver - >Chi cago Tot al Bw 1200

000010. 000000 0 0
000020. 000000 0.1272 0. 0106
000030. 000000 0.1272 0. 0106
000040. 000000 0.1272 0. 0106
000050. 000000 0.1272 0. 0106
000060. 000000 0.1272 0. 0106
000070. 000000 0.1272 0. 0106
000080. 000000 0.1272 0. 0106
000090. 000000 0. 0636 0. 0053

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNoNe]
OO OoOoOoo

Denver - >Chi cago avg utilization : 9.9375e-05
Denver - >SanDi ego Tot al Bw 1800

000010. 000000
000020. 000000
000030. 000000
000040. 000000
000050. 000000
000060. 000000
000070. 000000
000080. 000000

cNeoNeoNeoNoNolNolNo]
O O0OO0OO0OO0OO0OO0oOOo

82

000090. 000000 0 0
000100. 000000 0 0
000110. 000000 0 0
000120. 000000 0 0
000130. 000000 0 0
000140. 000000 0 0
000150. 000000 0 0
Denver - >Col orado Tot al Bw 600

000010. 000000 0 0
000020. 000000 0.1272 0.0212
000030. 000000 0.1272 0. 0212
000040. 000000 0.1272 0.0212
000050. 000000 0.1272 0. 0212
000060. 000000 0.1272 0. 0212
000070. 000000 0.1272 0.0212
000080. 000000 0.1272 0.0212
000090. 000000 0. 0636 0. 0106

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNoNe]
OO OoOoOoo

Denver - >Col orado avg utilization : 0.00019875
----utilization | ogs end----

-- Denver node record ends --------------------------------
-- Chicago node record begins ------------------------------
---Detailed utilization logs start ----

Total core bandwidth : 1800

time used_bw(mbps) % of total

Chi cago- >Denver Tot al Bw 600

000010. 000000 0 0
000020. 000000 0.1272 0. 0212
000030. 000000 0.1272 0. 0212
000040. 000000 0.1272 0. 0212
000050. 000000 0.1272 0. 0212
000060. 000000 0.1272 0. 0212

83

000070. 000000 0.1272 0. 0212
000080. 000000 0.1272 0. 0212
000090. 000000 0. 0636 0. 0106
000100. 000000 0 0
000110. 000000 0 0
000120. 000000 0 0
000130. 000000 0 0
000140. 000000 0 0
000150. 000000 0 0

Chi cago- >Denver avg utilization : 0.00019875

Chi cago- >NewYor k Tot al Bw 1800

000010. 000000 0 0
000020. 000000 0. 2544 0. 0141333
000030. 000000 0. 2544 0.0141333
000040. 000000 0. 2544 0. 0141333
000050. 000000 0. 2544 0. 0141333
000060. 000000 0. 2544 0. 0141333
000070. 000000 0. 2544 0. 0141333
000080. 000000 0. 2544 0. 0141333
000090. 000000 0.1272 0. 00706667
000100. 000000 0 0
000110. 000000 0 0
000120. 000000 0 0
000130. 000000 0 0
000140. 000000 0 0
000150. 000000 0 0

Chi cago- >NewYor k avg utilization : 0.0001325

Chi cago- >Kansas Tot al Bw 1200

000010. 000000 0 0
000020. 000000 0.1272 0. 0106
000030. 000000 0.1272 0. 0106
000040. 000000 0.1272 0. 0106
000050. 000000 0.1272 0. 0106
000060. 000000 0.1272 0. 0106
000070. 000000 0.1272 0. 0106
000080. 000000 0.1272 0. 0106
000090. 000000 0. 0636 0. 0053

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000

0
0
0
000140. 000000 0

o O oo

84

000150. 000000 0 0

Chi cago- >Kansas avg utilization : 9.9375e-05

----utilization | ogs end----

-- Chicago node record ends ------------------------~---~-~----
-- NewYork node record begins ------------------------------
---Detailed utilization logs start ----

Total core bandwi dth : 1800

time used_bw(nmbps) % of total

NewYor k- >Chi cago Tot al Bw 600

000010. 000000 0 0
000020. 000000 0. 2544 0. 0424
000030. 000000 0. 2544 0. 0424
000040. 000000 0. 2544 0. 0424
000050. 000000 0. 2544 0. 0424
000060. 000000 0. 2544 0. 0424
000070. 000000 0. 2544 0. 0424
000080. 000000 0. 2544 0. 0424
000090. 000000 0.1272 0. 0212

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

cNeoNeoNeNel
O OO oo

NewYor k- >Chi cago avg utilization : 0.0003975

NewYor k- >SanDi ego Tot al Bw 1800

000010. 000000 0 0
000020. 000000 0.1272 0. 00706667
000030. 000000 0.1272 0. 00706667
000040. 000000 0.1272 0. 00706667
000050. 000000 0.1272 0. 00706667
000060. 000000 0.1272 0. 00706667
000070. 000000 0.1272 0. 00706667
000080. 000000 0.1272 0. 00706667
000090. 000000 0.0636 0.00353333
000100. 000000 0 0

85

000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

oNeoNeoNeNe
O OO oOo

NewYor k- >SanDi ego avg utilization : 6.625e-05

NewYor k- >\Washi ngt on Tot al Bw 1200

000010. 000000 0 0
000020. 000000 0.1272 0. 0106
000030. 000000 0.1272 0. 0106
000040. 000000 0.1272 0. 0106
000050. 000000 0.1272 0. 0106
000060. 000000 0.1272 0. 0106
000070. 000000 0.1272 0. 0106
000080. 000000 0.1272 0. 0106
000090. 000000 0. 0636 0. 0053

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNolNe]
OO OoOoOoo

NewYor k- >\Washi ngton avg utilization : 9.9375e-05
----utilization | ogs end----

-- NewYork node record ends --------------------------------
-- SanDi ego node record beging ----------- oo m i
---Detailed utilization logs start ----

Total core bandwidth : 1800

tinme used_bw(mbps) % of total

SanDi ego- >Denver Tot al Bw 1800

000010. 000000
000020. 000000
000030. 000000
000040. 000000

000050. 000000
000060. 000000

[eNeoNeoNeNoNo
O OO O0OOoOOo

86

000070.
000080.
000090.
000100.
000110.
000120.
000130.
000140.
000150.

000000
000000
000000
000000
000000
000000
000000
000000
000000

[eNeoNeoNeoNeoNoNoNolNe

SanDi ego- >NewYor k Tot al Bw 600

000010.
000020.
000030.
000040.
000050.
000060.
000070.
000080.
000090.
000100.
000110.
000120.
000130.
000140.
000150.

SanDi ego- >NewYork avg utilization :
SanDi ego- >LosAngel es Tot al Bw 1200

000010.
000020.
000030.
000040.
000050.
000060.
000070.
000080.
000090.
000100.
000110.
000120.
000130.
000140.
000150.

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

OO O0OO0O0O0OO0OO0OO0o

OO O0OO0OO0OO0OO0OO0o

0

. 1272
. 1272
. 1272
. 1272
. 1272
. 1272
. 1272
. 0636

0

cNeoNeoNeoNe

0

. 1272
. 1272
. 1272
. 1272
. 1272
. 1272
. 1272
. 0636

0

[eNeoNeoNoNe]

87

[eNeoNoNoNeoNolNolNo)

[eNeoNoNoNeoNolNolNo)

[eNeoNeoNolNolNolNolNoelo]

. 0212
. 0212
. 0212
. 0212
. 0212
. 0212
. 0212
. 0106

O OO oOoOo

. 00019875

. 0106
. 0106
. 0106
. 0106
. 0106
. 0106
. 0106
. 0053

OO OoOoOoo

SanDi ego- >LosAngel es avg utilization : 9.9375e-05
----utilization | ogs end----

-- SanDi ego node record ends --------------- oo
-- Colorado node record beging ------------mommmm oo
---Detailed utilization |logs start ----

Total core bandwidth : 600

time used_bw(nmbps) % of total

Col or ado- >Denver Tot al Bw 600

000010. 000000 0 0
000020. 000000 0.1272 0. 0212
000030. 000000 0.1272 0. 0212
000040. 000000 0.1272 0. 0212
000050. 000000 0.1272 0. 0212
000060. 000000 0.1272 0. 0212
000070. 000000 0.1272 0. 0212
000080. 000000 0.1272 0. 0212
000090. 000000 0. 0636 0. 0106

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNoNe]
O O OoOOoo

Col or ado- >Denver avg utilization : 0.00019875
----utilization | ogs end----

-- Col orado node record ends --------------------------------
-- Kansas node record begins ------------mm i
---Detailed utilization logs start ----

Total core bandwidth : 600

time used_bw(mbps) % of total

Kansas- >Chi cago Tot al Bw 600

88

000010. 000000 0 0

000020. 000000 0.1272 0. 0212
000030. 000000 0.1272 0. 0212
000040. 000000 0.1272 0. 0212
000050. 000000 0.1272 0. 0212
000060. 000000 0.1272 0. 0212
000070. 000000 0.1272 0. 0212
000080. 000000 0.1272 0. 0212
000090. 000000 0. 0636 0. 0106

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

oNeoNeoNeNel
O OO oOo

Kansas->Chi cago avg utilization : 0.00019875

----utilization | ogs end----

-- Kansas node record ends --------------------------------

-- Washington node record begins -----------momm oo
---Detailed utilization logs start ----

Total core bandwi dth : 600

time used_bw(nmbps) % of total

Washi ngt on- >NewYor k Tot al Bw 600

000010. 000000 0 0
000020. 000000 0.1272 0. 0212
000030. 000000 0.1272 0. 0212
000040. 000000 0.1272 0. 0212
000050. 000000 0.1272 0. 0212
000060. 000000 0.1272 0. 0212
000070. 000000 0.1272 0. 0212
000080. 000000 0.1272 0. 0212
000090. 000000 0. 0636 0. 0106

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNoNe]
OO OoOoOoo

89

Washi ngt on- >NewYor k avg utilization : 0.00019875
----utilization | ogs end----

-- Washington node record ends --------------------------------
-- LosAngel es node record begins ------------o oo
---Detailed utilization logs start ----

Total core bandwi dth : 600

time used_bw(mbps) % of total

LosAngel es- >SanDi ego Tot al Bw 600

000010. 000000 0 0
000020. 000000 0.1272 0. 0212
000030. 000000 0.1272 0. 0212
000040. 000000 0.1272 0. 0212
000050. 000000 0.1272 0. 0212
000060. 000000 0.1272 0. 0212
000070. 000000 0.1272 0. 0212
000080. 000000 0.1272 0. 0212
000090. 000000 0. 0636 0. 0106

000100. 000000 0 0
000110. 000000
000120. 000000
000130. 000000
000140. 000000
000150. 000000

[eNeoNeoNolNe]
O O OoOOoo

LosAngel es->SanDi ego avg utilization : 0.00019875
----utilization | ogs end----

-- LosAngel es node record ends --------------------------------

90

Bibliography

[1] ATM Forum. “Private Network-Network Interface Specification Version 1.0” February 1997
[2] RajJain, “PNNI: Routing in ATM Networks” http:/ /www.cis.ohio-state.edu/ jain

[3] Raif O. Onvural, Rao Cherukuri, “Signaling in ATM Networks” Artech House, Massachusetts
1997

[4] ITU Recommendation Q.2931, “B-ISDN Digital Subscriber Signaling System No 2 User To
Network Interface Layer 3 Specification for Basic Call/Connection Control”, ITU-International T-
elecommunication Union, 1995

[5] ATM Forum Technical Committee, “ATM User Network Interface specification version 3.1”, ATM
FORUM, September 1994

[6] ATM Forum Technical Committee, “ATM User Network Interface specification version 4.0 (af-sig-
0061.000)”, ATM FORUM, July 1996

91

Appendix A

Component Specific Details

This section details the ten components of the language and their legal parameters. The parameter
set associated with each of the components is described along with the values that they may be
assigned.

For any of the component group discussed, all parameters are optional unless specified other-
wise below. Any number of parameters are allowed and parameters may be repeated if desired
(the last value will be the one retained). However, if no parameters are to be given, then do not
include any parenthesis. See the declaration for Host or node in the example script in program
9.1.

A.1 Parameter block for Node Information

Below is a listing of currently supported parameters, their default values, and their accepted val-
ues. The listing also provides information about the necessity of the parameter. In the case of
optional parameters, any parameter not specified by the user will default to the programmed val-
ue.

parameter: ptse_age_offset
description: The random number of the offset value of PTSE lifetime. The offset unit is in

percent.
values: [fixed <value>] or [uniform <low> <high>]
default: [uniform -25 25]
optional: Yes
example: - uniform with low = 20 and high = 30 shown as

ptse_age_offset = [uniform 20 30]

- fixed with value = 25 shown as ptse_age_offset = [fixed 25]
parameter: fabric
description: The switch fabric used.

values: ku, generic, plaid
default: ku
optional: Yes

92

parameter:

description:

values:
default:
optional:

parameter:

description:

values:

default:
optional:

parameter:

description:

values:
default:
optional:

numports

The number of switch ports including the control port.
Integers from 2 to 64

4

Yes

routing_policy

The policy to be used in the routing algorithm.

- Minimum Hop policy (min_hop) is the distance vector policy which assigns
the same cost to all the links.

- Maximum Bandwidth policy (max_bw) computes a route with maximum
bandwidth.

- Minimum Delay policy (min_delay) computes a route with minimum time to
the destination.

- Minimum Administrative Weight policy (min_adw) finds a path with the min-
imum administrative weight.

- Shortest and Minimum Administrative Weight policy (shortest_min_adw)
evaluates min_adw routing first; if there is are more than one routes, the
min_delay (shortest delay path) routing is applied to these routes to find the
final route.

- Minimum Administrative Weight and Shortest policy (min_adw_shortest) e-
valuates the routes based on min_delay first. If there are more than one routes,
a min_adw routing is done on these set of equal routes to find the final route.

- Shortest and Widest policy (shortest_-widest) evaluates the route for maximiz-
ing the bandwidth. If there are more than one routes, min_delay routing policy
is used to find the final route.

- Widest and Minimum Hop policy (widest_min_hop) finds the route with min-
imum hop count first. If there are more than one possible routes, we select the
path with maximum bandwidth.

- Minimum Administrative Weight and Widest policy (min_adw_widest) finds
the route with maximum bandwidth first. If there are more than one possible
routes, we select the path that has minimum administrative weight.

min_hop, max_bw, min_delay, min_adw, shortest_ min_adw, min_adw_shortest,
shortest_ widest, widest_min_hop, min_adw_widest

max_bw

Yes

flooding significance

The policy to be used for horizontal link PTSE flooding. Use an explicit
threshold of minimum bandwidth or a re-origination function based dynam-
ic_threshold policy.

explicit_threshold, dynamic_threshold

dynamic_threshold

Yes

93

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

flooding_threshold

Minimum bandwidth threshold to be used for flooding PNNI link information.
Bandwidth in terms of the number of 53 byte ATM cells.

2

Optional if experimentation does not involve routing. Mandatory in case
of experimentation involving routing and the value for the parameter flood-
ing_significance is either explicit_threshold or dynamic_threshold.

prop-_constant

The proportionality constant to be used in the re-origination function for the
dynamic_threshold case.

Integers from 0 to 99

10

Yes

default_flooding_period

The PNNI default flooding period if the topology information is not re-
originated.

Integer value in seconds

1800

Yes

default_flooding factor

A constant multiplied together with the default_flooding_period.
Positive integer

2

Yes

acac_policy

Policy used in the connection admission control. In call_packing, if more than
one link is available to the next hop, then the routing is based on loading the
links one by one. In load_balancing, the load is evenly distributed amongst all
of the links.

call_packing, load_balancing

call_packing

Yes

util_log_period

This is the interval in seconds to log the link utilization for experimental pur-
poses.

Non-negative integer value in seconds

0

Yes

94

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

calltrace

This is the switch to enable logging of the route that each successful call makes.
true, false

false

Yes

queuesize

Sets the packet queue size in switch ports. Any packet arriving when the queue
is full is dropped.

Non-negative integer

200

Yes

hello_timer

The PNNI hello retransmit timer.
Integer value in seconds

15

Yes

hello_inactivity_factor

The PNNI hello inactivity factor determines the amount of time in which a hello
packet is expected from the peer.

Integer

4

Yes

summary_timer

The PNNI summary timer is the timer used for retransmission of topology
summary information.

Integer value in seconds

20

Yes

ptsp-timer

Timer for retransmission of PTSP packets.
Integer value in seconds

20

Yes

ack_timer

Timer for transmission of acknowledgement packets.
Integer value in seconds

5

Yes

95

parameter:
description:
values:
default:
optional:

parameter:
description:
values:
default:
optional:

parameter:
description:
values:
default:
optional:

request_timer

Timer for transmission of request packets.
Integer value in seconds.

20

Yes

reaggregation_timer

Timer for reaggregation of peer group state information
Integer value in seconds.

0

Yes

process_time

The message process time in nodes.
Real number in milliseconds

2.0

Yes

A.2 Individual Node Information

Individual node information contains node specific information when it differs from the specified
generic node information.

All of the generic node parameters listed in section A.1 can also be used in individual node
information with the following exceptions:

Unavailable parameters:

o ctrl

e link

e duration

& convergence

e process_time

Additional parameters:

parameter:
description:
values:
default:
optional:

parameter_block

The base building block from which the node can inherit common properties
parameter block name

none.

If this block is not given, the default parameters are assumed.

96

parameter:

description:

values:
default:

optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

level

The number of bits that need to be same within a peer group for PNNI to func-
tion.

Integer ranging from 8 to 104

96, assuming the lowest hierarchy, this is the maximum number of bits that can
be used as a prefix. Higher the level indicator, lower is the node in the hierarchy
Yes

peergroupid

To represent whether a physical node or logical node
160 for physical node

160

Yes

address

The address of the node represented as a 40 byte string
40 byte atm address

Mandatory

leader

This is set for a peer group leader
true, false

false

Yes

bordernode

This is set for a border node
true, false

false

Yes

aggr_token

To uniquely identify a border node, an aggregation token is configured
Any Integer

0

Mandatory for a border node

nodal_aggr_policy

The aggregation policy used for Nodal Aggregation
optimistic, pessimistic, average, mesh, sym_average
mesh

Yes

97

parameter:
description:
values:
default:
optional:

link_aggr_policy

The link aggregation policy to be used
optimistic, pessimistic, average
average

Yes

A.3 Generic Port Information

Below is a listing of currently supported parameters, their default values, and their ranges. The
listing also provides information about the necessity of the parameter. In the case of optional pa-
rameters, if the parameter is not specified by the user, the programmed value will be used.

parameter:
description:
values:

default:
optional:

parameter:
description:
values:
default:

optional:

parameter:
description:
values:
default:
optional:

parameter:
description:
values:
default:
optional:

parameter:
description:
values:
default:

optional:

bw

The port bandwidth for all of the ports on the switch.

OC3 (155Mbps), DS3 (45Mbps), OC12 (600 Mbps), DS1 (1.5 Mbps), T1 (1.5 Mbp-
s), or an integer that explicitly specifies a value in Mbps.

0Cs3

Yes

delay

The link delay for links.
Integer value in milliseconds
0

Yes

cdv

The cell delay variation suffered at each of the links.

Integer value in millisecond (must be less than the link delay)
0

Yes

clr

The cell loss ratio at the links.

Positive integer (The cell loss ratio is 10
0

Yes

—cl‘r))

ad_weight

The administrative weight of a link.
Integer between 0 and 99.

0

Yes

98

A.4 Parameter block for Host Information

Below is a listing of currently supported parameters, their default values, and their ranges. The
listing also provides information about the necessity of the parameter. In the case of optional pa-
rameters, if the parameter is not specified by the user, the programmed value will be used.

parameter:

description:

values:

default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

calltype

This is the service type of the call to be attempted.

CBR for constant bit rate service, ABR for available bit rate service, RTVBR for
real time variable bit rate service, VBR for non real time variable bit rate service,
or UBR for unspecified bit rate service

CBR

Yes

calls

The number of calls to be attempted. The value unspecified indicates that calls
are attempted for the duration of the simulation.

Integer or unspecified

10

Yes

arrival_distribution

The distribution of call arrivals.
periodic, poisson, bursty, tear_down
periodic

Yes

arrival_period

In the case of periodic distribution, it’s the period of the call arrivals.
Integer value in seconds

10

Yes

arrival_low

Lower limit of uniform arrival distribution.
Integer value in seconds

5

Yes

arrival_high

Upper limit of uniform arrival distribution.
Integer value in seconds

10

Yes

99

parameter: arrival_mean
description: Mean arrival time of a Poisson distribution.

values: Integer value in seconds
default: 15
optional: Yes

parameter: duration_distribution
description: The distribution of call durations.

values: periodic, poisson, uniform
default: periodic
optional: Yes

parameter: duration_period
description: In the case of periodic distribution, it’s the period of call durations.

values: Integer value in seconds
default: 40
optional: Yes

parameter: duration_low
description: Lower limit of a uniform duration distribution.

values: Integer value in seconds
default: 5
optional: Yes

parameter: duration_high
description: Upper limit of a uniform duration distribution.

values: Integer value in seconds
default: 10
optional: Yes

parameter: duration_mean
description: Mean duration time of a Poisson duration distribution.

values: Integer value in seconds
default: 15
optional: Yes

parameter: sourcetype
description: The type of source option in the host: single when we have only one traffic
source, multiple when we have more than one traffic source.

values: single, multiple
default: single
optional: Yes

100

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

numsources
The number of traffic sources in a host.
Integer more than 0

Not applicable

Required when sourcetype = multiple

share (followed by the source number)

The percentage of total calls attempted by a traffic source.

1to 100

0

If sourcetype is multiple then for each source type this parameter has to be spec-
ified, for example sourcetype=multiple, numsources=3, share1=30, share2=30,
share3=40

duration

The duration of the simulation.
Integer value in seconds

1000

Yes

queuesize

Sets the packet queue size in host ports. Any packet arriving when the queue
is full is dropped.

Integer

200

Yes

host_process_time

The message process time in hosts.
Real number in milliseconds

5.0

Yes

call_bw

The bandwidth for call connection requests. The bandwidth could have a dis-
tribution - could be fixed, poisson or uniform. For fixed, the constant BW is
the next parameter, for uniform, low and high parameters and for poisson, the
mean is required. All bandwidth parameters are meansured in Kbps

[fixed <value>] or [poisson <mean>] or [uniform <low> <high>]

[fixed 64]

Yes

101

parameter: ctd
description: The cell transfer delay for the call connection request.

values: Integer value in milliseconds
default: 0
optional: Yes

parameter: clr
description: The cell loss ratio for call connection requests.

values: Non-negative integer (The cell loss ratio is 10(=¢1"))
default: 0
optional: Yes

parameter: cdv
description: The cell delay variation suffered for call connection requests.

values: Integer value in milliseconds
default: 0
optional: Yes

If multiple sources are present, then the following parameters can be specified for each by
simply adding the source number to the end of the parameter name:

e share (required)

e distribution (duration_distribution)
e duration_period

e duration_low

e duration_high

e duration_mean

e call bw

e cdv

e ctd

e clr

For example, for source 1, we could specify sharel, distribution1, duration_low1, duration_highl,
call bwl, ctdl, clrl, and cdvl. Perhaps for source 2, we specify share2, distribution2, dura-
tion_mean2, call_bw2, cdv2, clr2, and ctd2. And so on...

A.5 Individual Host information

Individual host information contains host specific information when it differs from the generic
host information.

All of the generic host parameters listed in section A.4 can also be use in individual host infor-
mation with the following exceptions:

102

Unavailable parameters:
e link
e duration
e host_process_time

Additional parameters:
parameter: ~ parameter_block
description: The base building block from which the host can inherit common properties
values: parameter block name
default: none.
optional: If this block is not given, the default parameters are assumed.

parameter: address

description: The address of the host represented as a 40 byte string, the host should have
the prefix from the switch to which it is connected and the MAC address in
addition to the prefix.

values: 40 byte atm address

optional: Mandatory

A.6 Load Information

This section defines the traffic characteristics of every host - call information, destinations and the
probabilities associated with them.
parameter: numdestinations
description: To specify the number of destinations the calls are made when the value of
destination parameter is explicit.

values: Integer
default: 0
optional: Must be specified when destination parameter is explicit.

parameter: destination
description: Type of destination the calls are attempted to: explicit the explicit the destina-
tions. If not specified no calls are made

values: explicit
default: invalid
optional: Yes

parameter: destinations
description: Specifies the explicit destinations or ould be the keyword uniform_any in which
case calls are made to all hosts in the network with equal probability

values: names of the destination hosts which must separated by blank spaces
default: Not applicable.
optional: Must be specified if the value of the destination parameter is explicit.

103

parameter:
description:

values:

default:
optional:

destn_prob

Specifies the probabilities with which calls have to be made to the explicit des-
tinations.

floating point probabilities of the destination hosts which must separated by
blank spaces

Not applicable.

Must be specified if the value of the destination parameter is explicit.

Apart from these parameters, the load also contains information like the arrival and suration
distribution of the calls, their mean, low and high values etc.

A.7 Connectivity Information

In connectivity information, the two sides of the connections consist of node-node connections
but need not, consist of host to node connections. For each connection, port information can be
provided as chronicled in section A.3 above.

Available port parameters:

o bw
o delay
e cdv
o clr
o ad_weight
Additional parameters:
parameter: numconnections
description: ~ The number of connections between the two entities.
values: Integer greater than or equal to 1
default: 1
optional: Yes

A.8 Logical Node Information

This section consists of logical nodes at higher levels in the PNNI hierarchy.

parameter:
description:
values:
optional:

parameter:
description:
values:
optional:

level

The level of the logical node.
Integer value greater than 104
Mandatory

child

The child node which the Logical Node represents
The leader name at the immediate lower level
Mandatory

104

A.9 Logical Connectivity Information

In logical connectivity information, the two sides of the connections consist of logical nodes.

parameter:
description:
values:
optional:

parameter:
description:
values:
default:
optional:

delay

The delay of the logical link.
Integer value in seconds

Yes

numconnections

The number of connections between the two entities.
Integer greater than or equal to 1

1

Yes

A.10 Schedule of events

The schedule gives the duration of the experiment and events like nodefail, portfail if any.

parameter:
description:
values:
optional:

parameter:
description:
values:
default:

optional:

parameter:
description:
values:
default:

optional:

parameter:
description:
values:
default:

optional:

duration

The duration of the simulation.
Integer value in seconds

Has to be given

seed

The random seed for the simulation.
Any Integer value

Randomly generated in the simulator
Yes

nodal_represent

Simple or Complex representation to be used for nodal aggregation
simple, complex

simple

Yes

mpg
Flag for running hierarchical PNNI simulations

true, false
false
Mandatory for Hierarchical PNNI simulations

105

parameter:

description:

values:
default:
optional:

parameter:

description:

values:
default:
optional:

node_fail

This is a flag used to intentionally denote that a particular node has failed for
all calls coming into it. Thus all calls passing that node will fail and crankback
with node failure as cause. This is useful for crankback and alternate routing
DEBUGGING purposes. The Nodename of the failure node is given.
<Nodename>

false

Yes

link_fail

This is a flag used to intentionally denote a link to have failed. Thus all calls
on that link will crank back with link failure as cause value. This is useful
for crankback and alternate routing DEBUGGING purposes. Two Nodenames
have to be given, saying the port of Nodenamel connecting to Nodename?2 is a
failure

<Nodenamel> <Nodename2>.

0

Yes

106

Appendix B

BNF Grammar

Note that the grammar is completely case-insensitive for all keywords, parameters, and values

<CHAR> =al| bl c|d|[e|] f] g]| h]
nl ol plaglr|s]| t] ul

<Dl d T> =0| 12| 2| 3] 4| 5] 6| 7

<| NT> = <Dl d T>+

<REAL> ;o= <I NT>*. <| NT>

<STRING> ::= < <CHAR> | <INT> >*

<EMPTY> ::= NULL

<ENTI TYNAME> :: = <STRI NG

<ARROW ::= ->

/* * k% * * *x % % * *x *x *x % * * *x * %

* Start of a script *

* % % * *x *x % % * *x % *x % * * *x * */

<programs ::= <EMPTY> | <itenList> ’;’
<itenList> ::= <itenList>";’ <itenp
| <itenp

/* * k% * * *x % % * *x *x *x % * * *x * %

* Start of Schedul e Options *

* %k k% * *x *x % % * *x % *x % * * *x * */

<schedul e> :

<duration> ::= duration '= <|NT>

<eventList> ::= <eventList> ',’ <event>
| <event>

<event> :.= <failureQption>

| <recoveryOption>

107

schedule " {’ <duration> "}’
schedule " {’ <duration> ' ,’

m |
z

<schedul e>

<eventList> "} ';’

<failureQption> ::= <nodefail Qpti on>
| <portfail Option>
I

<l i nkfail Qpti on>

<recoveryQption> ;.= <EMPTY>

nodef ai | <ENTI TYNAVE>

<nodef ai | Opti on> ::

<portfail Option> ::= portfail <ENTI TYNAME> <ENTI TYNAME>

<linkfail Option> ::= linkfail <ENTI TYNAME> <ENTI TYNAME>

/* * % * *x *x % * * *x *x *x % * * *x * *

* Start of Item Options *

* * *x *x % * * *x *x % * * * *x *x * * */

<itempr ::= <paraneterbl ock>
| <node>

| <host>

| <port>

| <l oad>

| <physi cal host s>
| <connection>

<par amnet er bl ock> ::= paraneter_bl ock node <ENTI TYNAMVE>
"{’ <genericNodeOptions> "}’

| paraneter_bl ock host <ENTI TYNAME>
"{’ <genericHost Options> "}’

<node> ::= node <ENTITYNAME> ' {’ <nodeOptions> '}’

<host> ::= host <ENTITYNAME> ' {’ <hostOptions> '}’

<port> ::= port genericport ’'{’ <portOptions> '}’

<l oad> ::= | oad <ENTI TYNAME> ' {’ <l oadOptions> '}’

<physi cal host s> ::= <PHYSI CAL_HOSTS> ' =" hostpool ’'(’ <machi neOptions> ')’
<connection> ::= connection <ENTI TYNAVE> <ARROW <ENTI TYNAME>

"{’ <connectionOptions> "}’
| connection <ENTI TYNAVE> <ARROW <ENTI TYNANVE>

/* * % * *x *x % * * * *x *x % * * *x *x *

* Start of Generic Node Options *

* * * *x % * * *x *x % * * * *x *x * * */

108

<generi cNodeQpt i ons> : : = <generi cNodeOptions> , <genericNodeOption>
| <genericNodeOption>

<generi cNodeOption> ::= <ctrl Opti on>
| <calltraceOption>
| <fabricOption>
| <l'inkOption>
| <routingOption>
| <fl oodingSignificantOption>
| <fl oodi ngThreshol dOpti on>
| <propconstant Opti on>
| <defaultFl oodi ngPeriodOpti on>
| <default Fl oodi ngfactor Opti on>
| <acacPolicyOpti on>
| <numportsOption>
| <utillogPeriodOption>
| <crankbackRetri esOption>
| <queueSi zeOpti on>
| <hell oTi meOpti on>
| <hellolnactivityOption>
| <summaryTi mer Qpti on>
| <ptspTinmerOption>
| <ackTi mer Option>
| <requesTi ner Opti on>
| <convergenceOpti on>
| <ProcessTi neOption>
| <searchMbdeOpti on>

<nodeOptions> ::= <nodeOptions> ',’ <nodeOption>
| <nodeOpti on>

<nodeQOpti on> :: = <nodebl ockOpti on>

<sear chMbdeOpti on>

<l evel Opti on>

<peer groupi dOpt i on>
<addressOpti on>

<i dOpti on>

<cal ltraceOption>
<fabricOption>
<routingOption>

<f | oodi ngSi gni fi cant Cpti on>
<f | oodi ngThr eshol dOpti on>

<pr opconst ant Opti on>

<def aul t Fl oodi ngPer i odOpti on>
<def aul t FI oodi ngf act or Opti on>
<acacPol i cyOpti on>
<nunportsQpti on>

109

<utill ogPeri odOpti on>
<crankbackRetri esOpti on>
<queueSi zeOpti on>

<hel | oTi meCpti on>

<hel I ol nactivityOption>
<sunmar yTi mer Opti on>
<pt spTi mer Opti on>
<ackTi mer Qpti on>
<requesTi nmer Opt i on>
<nodeWr kst ati onOpt i on>
<fabricvci Option>

<Pr ocessTi neOpt i on>

<nodebl ockOpti on> :: = paraneter_bl ock <ENTI TYNAVE>
<sear chModeOpti on> ::= search_node '= dijkstra
| search_node "= dfs_wal k
<l evel Option> ::=level "= <INT>
<peer groupi dOption> ::= peergroupid "= <|NT>
<addressOption> ::= address '= <ATMADDRESS>
<idOption> ::=id = <INT>
<ATMADDRESS> :: = ' 0x’ <STRI NG*
<cal ltraceOption> ::= calltrace "= true
| calltrace '= true
<ctrl Option> ::= ctrl = true
| ctrl = fal se
<fabricOption> ::= fabric = generic
| fabric = plaid
| fabric = ku
<linkOption> ::=1link = tcp
| link = atmsvc
| Iink = atm pvc
| Iink = pass_thru

<routingOption> ::=routing_policy = mn_hop
| routing_policy = max_bw
| routing_policy = mn_del ay
| routing_policy = mn_bw
| routing_policy = mn_adw

110

| routing_policy = shortest_w dest

| routing_policy = w dest_shortest

| routing_policy = wi dest_m n_hop

| routing _policy = mn_hop_w dest

| routing_policy = m n_adw w dest

| routing _policy = mn_adw shortest

| routing_policy = shortest_nmin_adw

| routing_policy = mn_adw w dest_shortest
| routing_policy = wi dest_shortest _m n_hop
| routing_policy = shortest_w dest_nin_hop
| routing policy = max_bw df swal k

| routing_policy = mn_hop_df swal k

| routing policy = mn_tinme_dfswal k

<f | oodi ngSi gni f i canceOpti on> ::= fl oodi ng_significance
| flooding_significance

explicit_threshol d
dynani c_t hreshol d

<fl oodi ngThreshol dOption> ::= fl oodi ng_threshold = <| NT>
<propconstant Option> ::= prop_constant = <| NT>

<def aul t Fl oodi ngPeri odQOption> ::= default_floodi ng _period = <I NT>
<def aul t Fl oodi ngFactorQption> ::= default_floodi ng factor = <I NT>

<acacPol i cyOpti on> :: = acac_policy = | oad_bal anci ng
| acac_policy = call _packing

<nunportsQOption> ::= nunports = <|I NT>

<utillogPeriodOption> ::=utiln_|log period = <|INT>
<crankbackRetri esOption> ::= crankback retries = <I NT>
<durationQption> ::= duration = <|NT>

<queueSi zeOption> ::= queuesi ze = <| NT>

<hel | oTi merQption> ::= hello_tinmer = <INT>
<hellolnactivityOption> ::= hello_inactivity factor = <|INTI>
<sunmaryTi mer Option> ::= summary_tinmer = <| NT>
<ptspTimerOption> ::= ptsp_timer = <INT>

<ackTinmerOption> ::= ack_tinmer = <|INT>

111

<request TimerOption> ::= request_tinmer = <|NT>

<edgeNodesOpti on> :: = edge_nodes = <| NT>
<coresNodeQption> ::= core_nodes = <|NT>
<convergenceQpti on> ::= convergence = <| NT>

<ProcessTi meQpti on> ::= process_tinme = <REAL>
<nodeWdr kst ati onCption> ::= workstati on = <ENTI TYNAME>
<fabricvci Option> ::= fabric_vci = <INT>

/* * k% * * *x % % * *x *x *x % * * *x * %

* Start of Host Paranmeter Options *

* % k% * *x *x % % * *x % *x % * * *x % */

<genericHost Options> ::= <genericHostOptions>"," <genericHost Option>
| <genericHost Option>

<generi cHost Opti on> ::= <cal | sOpti on>
<hostCtrl Qpti on>

<host Dur ati onOpti on>
<host queueSi zeOpt i on>
<host ProcessOpt i on>
<host Li nkQpt i on>

<cal | TypeOpti on>
<arrival Di stributionOption>
<dur ati onDi stri buti onOpti on>
<desti nati onOpti on>

<sour ceTypeOpti on>
<arrival Peri odOpti on>
<arrival LowOpti on>
<arrival H ghOpti on>
<arrival MeanOpt i on>

<dur ati onPeri odOpti on>
<dut at i onLowOpt i on>

<dur ati onHi ghOpti on>

<dur at i onMeanQpti on>
<nunDesti nati onsOpti on>
<desti nati onsOpti on>
<nunSour cesOpti on>

<mul ti pl eSour ce MBSOpt i on>
<nmul ti pl eSour ce SCROpt i on>
<mul ti pl eSour ce PCROpt i on>
<mul ti pl eSour ceBWpti on>

112

<host Opti ons> ::

<host Opti on> ::

<host bl ockOption> ::

<mul ti pl eSour ceCTDOpt i on>

<nmul ti pl eSour ceCLROpt i on>

<mul ti pl eSour ceCDVOpt i on>

<nmul ti pl eSour cePer cent Opti on>

<mul ti pl eSour ceDur ati onTypeOpti on>

I
I
I
I
I
I
| <mul tipl eSourcebDurati onLowOpti on>

| <multipl eSourceDurationH ghOpti on>
| <multipl eSourcebDurati onMeanQpti on>
| <host SCROpti on>

| <host PCROpti on>

| <host MBSOpti on>

| <host BWOpti on>

| <host CTDOpti on>

| <host CLROpti on>

| <host CDVOpti on>

<host Options> ' ,’ <host Opti on>

<host Opti on>

<host bl ockOpti on>

<host addr essOpt i on>

<hosti dOpti on>

<host Wr kst ati onOpt i on>

<host queueSi zeOpt i on>

<sour ceTypeOpti on>

<nunSour cesOpti on>

<mul ti pl eSour ce MBSOpt i on>

<nmul ti pl eSour ce SCROpt i on>

<nmul ti pl eSour ce PCROpt i on>

<mul ti pl eSour ceBWOpt i on>

<nmul ti pl eSour ceCTDOpt i on>

<mul ti pl eSour ceCLROpt i on>

<nmul ti pl eSour ceCDVOpt i on>

<mul ti pl eSour cePer cent Opti on>

<nmul ti pl eSour ceDurati onTypeOpti on>
<mul ti pl eSour ceDur ati onPeri odOpti on>
<nmul ti pl eSour ceDur ati onLowOpt i on>
<mul ti pl eSour ceDur ati onH ghOpti on>
<nmul ti pl eSour ceDur ati onMeanOpti on>

= paranet er _bl ock <ENTI TYNAVE>

<host addressOpt i on> :: = <ADDRESS> ' = <ATMADDRESS>

<hosti dOpti on>

1= <SWTCH D> "= <INT>

113

<nmul ti pl eSour ceDur ati onPeri odOpti on>

<host Wr kstati onOption> ::= workstati on = <SERVERADDR>

<hostCtrl Qption> ::= ctrl = true
| ctrl = fal se
<host Durati onOption> ::= duration = <|NT>
<host queueSi zeOpti on> :: = queuesi ze = <| NT>
<host ProcessOpti on> ::= host_process_ti ne = <REAL>

| host_process_time = <| NT>

<host Li nkOption> ::=1link = tcp
| Iink = atmsvc
| link = atm pvc
| Iink = pass_thru

= destination fixed
| destination = range
| destination = explicit

<desti nati onOption> ::

<sourceTypeQpti on> ::= sourcetype = single
| sourcetype = nultiple

<nunDestinati onsOption> ::= nundestinati ons = <|I NT>
<destinationsOption> ::.= destinations '= ’'[’ <stringlist> "]’

| destinations '=" uniform.any
<stringlist> ::= <stringlist> <ENTI TYNAVE>

| <ENTI TYNAVE>
<integerList> ::= <INI> <| NT>*

<numnour cesOpti on> :: = nunsources = <INT>

di stribution<l NT>

| distribution<lNT>
| distribution<l NT>

<mul ti pl eSour ceDur ati onTypeOption> ::

<nul ti pl eSourceBWXti on> ::= bwI NT> = <| NT>
<nmul ti pl eSourceCTDOption> ::= ctd<INI> = <|INT>
<nmul ti pl eSourceCDVOption> :: = cdv<I NT> = <INT>

114

poi sson
fixed
uni form

<nmul ti pl eSourceCLROption> ::= clr<INT> <| NT>

<nul ti pl ePercent Opti on> ::= share<| NT> <| NT>

<nul ti pl eSourceDurati onPeri odOption> ::= duration_period<|NTI> = <[NT>

<mul ti pl eSour ceDurati onLowOpti on> ::= duration_| ow<l NT> = <| NT>
<mul ti pl eSour ceDur ati onHi ghOpti on> :: = duration_hi gh<l NT> = <| NT>
<mul ti pl eSour ceDur ati onMeanQpti on> :: = duration_mean<| NT> = <| NT>
<host BWOpti on> :: = <BANDW DTH> = <| NT>

<BANDW DTH> ::= bw | bandw dth

<host CTDOption> ::= ctd = <INT>

<host CDVOption> ::= cdv = <|INT>

<host CLROption> ::= clr = <INT>

<port> ::= port = genericport (<portOption> <, <portOption>>*)

<port Option> ::= <bwOption>
| <del ayOpti on>

| <cdvOption>

| <clrOption>

| <adwei ght Option>

<bwOpt i on> ::= <BANDW DTH> = OC3

| <BANDW DTH> = DS3

| <BANDW DTH> = OC12

| <BANDW DTH> = T1

| <BANDW DTH> = DS1

| <BANDW DTH> = <I NT>
<del ayOption> ::= delay = <INT>
<cdvOption> ::= cdv = <INT>
<clrOption> ::=clr = <INT>
<adwei ght Option> ;.= as_wei ght = <I NT>

/* * % * *x *x % * * *x *x *x * * * *x * *

115

* Start of Load Paraneter *

* % % * * *x % % * *x % *x % * * *x % */

<l oadOptions> ::= <l oadOptions> ',’ <loadOption>
| <l oadOption>

<l cadOption> ::= <cal |l sOpti on>

<cal | TypeOpti on>
<arrival Di stributionOption>
<dur ati onDi stri buti onOpti on>
<arrival Peri odOpti on>
<arrival LowOpti on>
<arrival H ghOpti on>
<arrival MeanOpt i on>
<dur ati onPeri odOpti on>
<dur at i onLowOpt i on>
<dur ati onHi ghOpti on>
<dur at i onMeanQpt i on>
<host MBSOpt i on>

<host SCROpt i on>

<host PCROpt i on>
<host Cal | BWDi st Opti on>
<host CTDOpt i on>

<host CLROpt i on>

<host CDVOpt i on>
<desti nati onOpti on>
<nunDesti nati onsOpti on>
<desti nati onsOpti on>
<destn_probQOpti on>

<callsOption> ::=calls = <INT>
| calls = unspecified
<cal | TypeOption> : .= calltype = chbr

| calltype = rtvbr
| calltype = vbr
|
|

cal l type abr
cal l type ubr

<arrival DistributionOption> ::= arrival _distribution =
| arrival _distribution =
| arrival _distribution =
| arrival _distribution =
| arrival _distribution =
| arrival _distribution =
= duration_distribution
| duration_distribution
| duration_distribution

<dur ationDi stri buti onOption> :

116

peri odic
poi sson
bursty
explicit

t ear _down
uni form

= periodic
poi sson
uni form

<arrival PeriodOption> ::= arrival _period = <REAL>
| arrival _period = <INT>
<arrival LowOpti on> ::= arrival _| ow = <REAL>
| arrival _| ow = <I NT>
<arrival Hi ghOption> ::= arrival _high = <REAL>
| arrival _high = <I NT>
<arrival MeanOption> ::= arrival _nmean = <REAL>
| arrival _nmean = <I NT>
<durationPeriodOption> ::= duration_period = <|NT>
<durationLowOption> ::= duration_| ow = <INT>
<dur ati onH ghOption> ::= duration_high = <INT>
<dur ati onMeanQption> ::= durati on_nean = <|NT>
<host MBSOption> ::= nbs ' = <INT>
<host SCROption> ::= scr '= <INT>
<host PCROption> ::= pcr ' =" <INT>
<host Cal | BWDi st Option> ::= call_bw = [’ poisson <INT> "]’
| call _bw’'=" "[" uniform<INI> <INT> "]’
| call_bw =" "[" fixed <INT> "]’
<destn_probOpti on> ::= destn_prob =" '[' <realList> "]’
<real List> ::= <real Li st> <REAL>
| <REAL>
/*****************
* Start of Machine Options
* * % * *x * *x % *x * *x *x * *x * *x *
<machi neOpti ons> :: = <machi neCptions> ',’ <machi neOpti on>

| <machi neOpti on>

<machi neOpti on> :: = <ENTI TYNAME>

/* * % * * *x *x * * * *x *x * *

* k% %

* Start of Connection Options *

* * * *x % * * *x *x % * * * *x *x * * */

<connectionOpti ons> ::= <connectionOpti ons> ',’ <connectionOpti on>
| <connectionOpti on>

<connecti onQpti on> ::= <portOption>
<nuntConnecti onsOpti on>
<l eftvci Opti on>
<rightvci Qpti on>

<l eftportOpti on>
<rightport Opti on>
<server Option>

<nuntConnecti onsOpti on> :: = nuntonnections = <| NT>
<leftvci Option> ::= leftvci = <INT>

<rightvci Option> ::= rightvci = <INT>

<l eftportOption> ::.= leftport = <INT>
<rightportOption> ::= rightport = <INT>
<serverOption> ::= server = <ENTI TYNAVE>

118

